Serious-Engine/Sources/Engine/Math/TextureMapping.cpp

348 lines
11 KiB
C++
Raw Normal View History

2016-03-11 14:57:17 +01:00
/* Copyright (c) 2002-2012 Croteam Ltd. All rights reserved. */
#include "Engine/StdH.h"
2016-03-11 14:57:17 +01:00
#include <Engine/Math/TextureMapping.h>
#include <Engine/Base/Stream.h>
#include <Engine/Math/Functions.h>
#include <Engine/Math/Plane.h>
#include <Engine/Math/Projection.h>
#include <Engine/Math/Projection_DOUBLE.h>
// calculate default texture mapping control points from a plane
void CMappingVectors::FromPlane(const FLOATplane3D &plPlane)
{
// take origin at plane reference point
mv_vO = plPlane.ReferencePoint();
// if the plane is mostly horizontal
if (Abs(plPlane(2))>0.5) {
// use cross product of +x axis and plane normal as +s axis
mv_vU = FLOAT3D(1.0f, 0.0f, 0.0f)*(FLOAT3D&)plPlane;
// if the plane is mostly vertical
} else {
// use cross product of +y axis and plane normal as +s axis
mv_vU = FLOAT3D(0.0f, 1.0f, 0.0f)*(FLOAT3D&)plPlane;
}
// make +s axis normalized
mv_vU.Normalize();
// use cross product of plane normal and +s axis as +t axis
mv_vV = mv_vU*(FLOAT3D &)plPlane;
}
void CMappingVectors::FromPlane_DOUBLE(const DOUBLEplane3D &plPlane)
{
FromPlane(DOUBLEtoFLOAT(plPlane));
}
// calculate plane from default mapping vectors
void CMappingVectors::ToPlane(FLOATplane3D &plPlane) const
{
plPlane = FLOATplane3D(mv_vV*mv_vU, mv_vO);
}
// convert to human-friendly format
void CMappingDefinition::ToUI(CMappingDefinitionUI &mdui) const
{
// make a copy of parameters
FLOAT fUoS = md_fUoS;
FLOAT fUoT = md_fUoT;
FLOAT fVoS = md_fVoS;
FLOAT fVoT = md_fVoT;
// find size of mapping vectors
FLOAT fUSize = FLOAT(sqrt(fUoS*fUoS+fUoT*fUoT));
FLOAT fVSize = FLOAT(sqrt(fVoS*fVoS+fVoT*fVoT));
// find rotation of both vectors
ANGLE aURot = -(ATan2(fVoT, fVoS)-90.0f);
ANGLE aVRot = -(ATan2(fUoT, fUoS));
// use the found values
Snap(aURot, 0.001f);
Snap(aVRot, 0.001f);
mdui.mdui_aURotation= NormalizeAngle(aURot);
mdui.mdui_aVRotation= NormalizeAngle(aVRot);
mdui.mdui_fUStretch = 1/fUSize;
mdui.mdui_fVStretch = 1/fVSize;
mdui.mdui_fUOffset = md_fUOffset;
mdui.mdui_fVOffset = md_fVOffset;
}
// convert from human-friendly format
void CMappingDefinition::FromUI(const CMappingDefinitionUI &mdui)
{
// extract all values from mapping definition
md_fUoS = +Cos(-(mdui.mdui_aVRotation));
md_fUoT = +Sin(-(mdui.mdui_aVRotation));
md_fVoS = +Cos(-(mdui.mdui_aURotation)+AngleDeg(90.0f));
md_fVoT = +Sin(-(mdui.mdui_aURotation)+AngleDeg(90.0f));
md_fUoS /= mdui.mdui_fUStretch;
md_fUoT /= mdui.mdui_fUStretch;
md_fVoS /= mdui.mdui_fVStretch;
md_fVoT /= mdui.mdui_fVStretch;
md_fUOffset = mdui.mdui_fUOffset;
md_fVOffset = mdui.mdui_fVOffset;
}
// make mapping vectors for this mapping
void CMappingDefinition::MakeMappingVectors( const CMappingVectors &mvSrc, CMappingVectors &mvDst) const
{
const FLOAT uos = md_fUoS;
const FLOAT uot = md_fUoT;
const FLOAT vos = md_fVoS;
const FLOAT vot = md_fVoT;
const FLOAT ood = 1.0f / (uos*vot-uot*vos);
const FLOAT sou = +vot*ood; const FLOAT sov = -uot*ood;
const FLOAT tov = +uos*ood; const FLOAT tou = -vos*ood;
mvDst.mv_vO = mvSrc.mv_vO
+ mvSrc.mv_vU * (md_fUOffset*sou + md_fVOffset*sov)
+ mvSrc.mv_vV * (md_fUOffset*tou + md_fVOffset*tov);
mvDst.mv_vU = mvSrc.mv_vU*uos + mvSrc.mv_vV*uot;
mvDst.mv_vV = mvSrc.mv_vU*vos + mvSrc.mv_vV*vot;
}
// transform default mapping vectors to mapping vectors for this mapping
void CMappingDefinition::TransformMappingVectors( const CMappingVectors &mvSrc, CMappingVectors &mvDst) const
{
const FLOAT uos = md_fUoS;
const FLOAT uot = md_fUoT;
const FLOAT vos = md_fVoS;
const FLOAT vot = md_fVoT;
mvDst.mv_vU = mvSrc.mv_vU*uos + mvSrc.mv_vV*uot;
mvDst.mv_vV = mvSrc.mv_vU*vos + mvSrc.mv_vV*vot;
{
FLOAT sou2 = mvDst.mv_vU%mvDst.mv_vU;
FLOAT sov2 = mvDst.mv_vV%mvDst.mv_vU;
FLOAT tou2 = mvDst.mv_vU%mvDst.mv_vV;
FLOAT tov2 = mvDst.mv_vV%mvDst.mv_vV;
FLOAT ood2 = 1/(sou2*tov2-sov2*tou2);
FLOAT uos2 = +tov2*ood2; FLOAT uot2 = -sov2*ood2;
FLOAT vot2 = +sou2*ood2; FLOAT vos2 = -tou2*ood2;
mvDst.mv_vO = mvSrc.mv_vO
+ mvDst.mv_vU * (md_fUOffset*uos2 + md_fVOffset*vos2)
+ mvDst.mv_vV * (md_fUOffset*vos2 + md_fVOffset*vot2);
}
}
// convert to mapping vectors
void CMappingDefinition::ToMappingVectors( const CMappingVectors &mvDefault, CMappingVectors &mvVectors) const
{
const FLOAT uos = md_fUoS;
const FLOAT uot = md_fUoT;
const FLOAT vos = md_fVoS;
const FLOAT vot = md_fVoT;
const FLOAT ood = 1.0f /(uos*vot-uot*vos);
const FLOAT sou = +vot*ood; const FLOAT sov = -uot*ood;
const FLOAT tov = +uos*ood; const FLOAT tou = -vos*ood;
mvVectors.mv_vO = mvDefault.mv_vO
+ mvDefault.mv_vU * (md_fUOffset*sou + md_fVOffset*sov)
+ mvDefault.mv_vV * (md_fUOffset*tou + md_fVOffset*tov);
mvVectors.mv_vU = mvDefault.mv_vU*sou + mvDefault.mv_vV*tou;
mvVectors.mv_vV = mvDefault.mv_vU*sov + mvDefault.mv_vV*tov;
}
// convert from mapping vectors
void CMappingDefinition::FromMappingVectors(
const CMappingVectors &mvDefault, const CMappingVectors &mvVectors)
{
FLOAT sou = mvVectors.mv_vU%mvDefault.mv_vU;
FLOAT sov = mvVectors.mv_vV%mvDefault.mv_vU;
FLOAT tou = mvVectors.mv_vU%mvDefault.mv_vV;
FLOAT tov = mvVectors.mv_vV%mvDefault.mv_vV;
FLOAT ood = 1/(sou*tov-sov*tou);
FLOAT uos = +tov*ood; FLOAT uot = -sov*ood;
FLOAT vot = +sou*ood; FLOAT vos = -tou*ood;
md_fUoS = uos;
md_fUoT = uot;
md_fVoS = vos;
md_fVoT = vot;
FLOAT3D vOffset = mvVectors.mv_vO-mvDefault.mv_vO;
FLOAT s = vOffset%mvDefault.mv_vU;
FLOAT t = vOffset%mvDefault.mv_vV;
md_fUOffset = uos*s+uot*t;
md_fVOffset = vos*s+vot*t;
}
// convert from old version of texture mapping defintion
void CMappingDefinition::ReadOld_t(CTStream &strm) // throw char *
{
// old texture mapping orientation and offsets structure
// - obsolete - used only for loading old worlds
class CTextureMapping_old {
public:
ULONG tm_ulFlags; // flags
ANGLE tm_aRotation; // angle of texture rotation
FLOAT tm_fOffsetU; // texture offsets (in meters)
FLOAT tm_fOffsetV;
} tmo;
strm>>tmo.tm_ulFlags;
strm>>tmo.tm_aRotation;
strm>>tmo.tm_fOffsetU;
strm>>tmo.tm_fOffsetV;
2016-03-11 14:57:17 +01:00
FLOAT fSin = Sin(tmo.tm_aRotation);
FLOAT fCos = Cos(tmo.tm_aRotation);
md_fUOffset = -tmo.tm_fOffsetU;
md_fVOffset = -tmo.tm_fOffsetV;
md_fUoS = +fCos;
md_fUoT = -fSin;
md_fVoS = +fSin;
md_fVoT = +fCos;
}
/* Find texture coordinates for an object-space point. */
void CMappingDefinition::GetTextureCoordinates(
const CMappingVectors &mvDefault, const FLOAT3D &vSpace, MEX2D &vTexture) const
{
FLOAT3D vOffset = vSpace-mvDefault.mv_vO;
FLOAT s = mvDefault.mv_vU%vOffset;
FLOAT t = mvDefault.mv_vV%vOffset;
FLOAT u = s*md_fUoS+t*md_fUoT;
FLOAT v = s*md_fVoS+t*md_fVoT;
vTexture(1) = FloatToInt((u+md_fUOffset)*1024.0f);
vTexture(2) = FloatToInt((v+md_fVOffset)*1024.0f);
}
/* Find object-space coordinates for a texture point. */
void CMappingDefinition::GetSpaceCoordinates(
const CMappingVectors &mvDefault, const MEX2D &vTexture, FLOAT3D &vSpace) const
{
FLOAT uos = md_fUoS;
FLOAT uot = md_fUoT;
FLOAT vos = md_fVoS;
FLOAT vot = md_fVoT;
FLOAT ood = 1/(uos*vot-uot*vos);
FLOAT sou = +vot*ood; FLOAT sov = -uot*ood;
FLOAT tov = +uos*ood; FLOAT tou = -vos*ood;
FLOAT u = (vTexture(1)/1024.0f)+md_fUOffset;
FLOAT v = (vTexture(2)/1024.0f)+md_fVOffset;
FLOAT s = u*sou+v*sov;
FLOAT t = u*tou+v*tov;
vSpace = mvDefault.mv_vO+mvDefault.mv_vU*s+mvDefault.mv_vV*t;
}
// project another mapping on this one
void CMappingDefinition::ProjectMapping(const FLOATplane3D &plOriginal, const CMappingDefinition &mdOriginal,
const FLOATplane3D &pl)
{
// make original mapping vectors
CMappingVectors mvDefaultOrg;
mvDefaultOrg.FromPlane(plOriginal);
CMappingVectors mvOriginal;
mdOriginal.ToMappingVectors(mvDefaultOrg, mvOriginal);
// transform them to this plane
CMappingVectors mv;
mv.mv_vO = pl.DeprojectPoint (plOriginal, mvOriginal.mv_vO);
mv.mv_vU = pl.DeprojectDirection(plOriginal, mvOriginal.mv_vU);
mv.mv_vV = pl.DeprojectDirection(plOriginal, mvOriginal.mv_vV);
FLOAT3D vOTest = plOriginal.ProjectPoint(mv.mv_vO);
FLOAT3D vUTest = plOriginal.ProjectDirection(mv.mv_vU);
FLOAT3D vVTest = plOriginal.ProjectDirection(mv.mv_vV);
// make mapping on this plane
CMappingVectors mvDefault;
mvDefault.FromPlane(pl);
FromMappingVectors(mvDefault, mv);
}
// translate mapping in 3D
void CMappingDefinition::Translate(const CMappingVectors &mvDefault, const FLOAT3D &vTranslation)
{
FLOATplane3D plPlane;
mvDefault.ToPlane(plPlane);
// make mapping vectors
CMappingVectors mv;
ToMappingVectors(mvDefault, mv);
// translate mapping origin
mv.mv_vO+=plPlane.ProjectDirection(vTranslation);
// convert back from new mapping vectors
FromMappingVectors(mvDefault, mv);
}
// rotate mapping in 3D
void CMappingDefinition::Rotate(const CMappingVectors &mvDefault,
const FLOAT3D &vRotationOrigin, ANGLE aRotation)
{
FLOATplane3D plPlane;
mvDefault.ToPlane(plPlane);
// project rotation origin to the plane
FLOAT3D vProjectedRotationOrigin = plPlane.ProjectPoint(vRotationOrigin);
// get texture coordinates of the origin before rotation
MEX2D vmexRotationOrigin0;
GetTextureCoordinates(mvDefault, vProjectedRotationOrigin, vmexRotationOrigin0);
// rotate the mapping
CMappingDefinitionUI mdui;
ToUI(mdui);
mdui.mdui_aURotation+=aRotation;
mdui.mdui_aVRotation+=aRotation;
FromUI(mdui);
// get texture coordinates of the origin after rotation
MEX2D vmexRotationOrigin1;
GetTextureCoordinates(mvDefault, vProjectedRotationOrigin, vmexRotationOrigin1);
// adjust texture offsets so that origin stays on same place in texture
md_fUOffset += (vmexRotationOrigin1(1)-vmexRotationOrigin0(1))/1024.0f;
md_fVOffset += (vmexRotationOrigin1(2)-vmexRotationOrigin0(2))/1024.0f;
}
// center mapping to given point in 3D
void CMappingDefinition::Center(const CMappingVectors &mvDefault,
const FLOAT3D &vNewOrigin)
{
FLOATplane3D plPlane;
mvDefault.ToPlane(plPlane);
// make mapping vectors
CMappingVectors mv;
ToMappingVectors(mvDefault, mv);
// set new mapping origin
mv.mv_vO=plPlane.ProjectPoint(vNewOrigin);
// convert back from new mapping vectors
FromMappingVectors(mvDefault, mv);
}
// transform mapping from one placement to another
void CMappingDefinition::Transform(const FLOATplane3D &plSourcePlane,
const CPlacement3D &plSource, const CPlacement3D &plTarget)
{
CSimpleProjection3D_DOUBLE prProjection;
prProjection.ObjectPlacementL() = plSource;
prProjection.ViewerPlacementL() = plTarget;
prProjection.Prepare();
CMappingDefinition mdTarget;
prProjection.ProjectMapping(*this, FLOATtoDOUBLE(plSourcePlane), mdTarget);
*this = mdTarget;
}
// stream operations
CTStream &operator>>(CTStream &strm, CMappingDefinition &md)
{
strm>>md.md_fUoS;
strm>>md.md_fUoT;
strm>>md.md_fVoS;
strm>>md.md_fVoT;
strm>>md.md_fUOffset;
strm>>md.md_fVOffset;
2016-03-11 14:57:17 +01:00
return strm;
}
CTStream &operator<<(CTStream &strm, const CMappingDefinition &md)
{
strm<<md.md_fUoS;
strm<<md.md_fUoT;
strm<<md.md_fVoS;
strm<<md.md_fVoT;
strm<<md.md_fUOffset;
strm<<md.md_fVOffset;
2016-03-11 14:57:17 +01:00
return strm;
}