webui-aria2/js/libs/dojox/math/stats.js.uncompressed.js
2012-05-01 19:52:07 +08:00

196 lines
5.8 KiB
JavaScript

//>>built
// AMD-ID "dojox/math/stats"
define("dojox/math/stats", ["dojo", "../main"], function(dojo, dojox) {
dojo.getObject("math.stats", true, dojox);
var st = dojox.math.stats;
dojo.mixin(st, {
sd: function(/* Number[] */a){
// summary:
// Returns the standard deviation of the passed arguments.
return Math.sqrt(st.variance(a)); // Number
},
variance: function(/* Number[] */a){
// summary:
// Find the variance in the passed array of numbers.
var mean=0, squares=0;
dojo.forEach(a, function(item){
mean+=item;
squares+=Math.pow(item,2);
});
return (squares/a.length)-Math.pow(mean/a.length, 2); // Number
},
bestFit: function(/* Object[] || Number[] */a, /* String? */xProp, /* String? */yProp){
// summary:
// Calculate the slope and intercept in a linear fashion. An array
// of objects is expected; optionally you can pass in the property
// names for "x" and "y", else x/y is used as the default. If you
// pass an array of numbers, it will be mapped to a set of {x,y} objects
// where x = the array index.
xProp = xProp || "x", yProp = yProp || "y";
if(a[0] !== undefined && typeof(a[0]) == "number"){
// this is an array of numbers, so use the index as x.
a = dojo.map(a, function(item, idx){
return { x: idx, y: item };
});
}
var sx = 0, sy = 0, sxx = 0, syy = 0, sxy = 0, stt = 0, sts = 0, n = a.length, t;
for(var i=0; i<n; i++){
sx += a[i][xProp];
sy += a[i][yProp];
sxx += Math.pow(a[i][xProp], 2);
syy += Math.pow(a[i][yProp], 2);
sxy += a[i][xProp] * a[i][yProp];
}
// we use the following because it's more efficient and accurate for determining the slope.
for(i=0; i<n; i++){
t = a[i][xProp] - sx/n;
stt += t*t;
sts += t*a[i][yProp];
}
var slope = sts/(stt||1); // prevent divide by zero.
// get Pearson's R
var d = Math.sqrt((sxx - Math.pow(sx,2)/n) * (syy - Math.pow(sy,2)/n));
if(d === 0){
throw new Error("dojox.math.stats.bestFit: the denominator for Pearson's R is 0.");
}
var r = (sxy-(sx*sy/n)) / d;
var r2 = Math.pow(r, 2);
if(slope < 0){
r = -r;
}
// to use: y = slope*x + intercept;
return { // Object
slope: slope,
intercept: (sy - sx*slope)/(n||1),
r: r,
r2: r2
};
},
forecast: function(/* Object[] || Number[] */a, /* Number */x, /* String? */xProp, /* String? */yProp){
// summary:
// Using the bestFit algorithm above, find y for the given x.
var fit = st.bestFit(a, xProp, yProp);
return (fit.slope * x) + fit.intercept; // Number
},
mean: function(/* Number[] */a){
// summary:
// Returns the mean value in the passed array.
var t=0;
dojo.forEach(a, function(v){
t += v;
});
return t / Math.max(a.length, 1); // Number
},
min: function(/* Number[] */a){
// summary:
// Returns the min value in the passed array.
return Math.min.apply(null, a); // Number
},
max: function(/* Number[] */a){
// summary:
// Returns the max value in the passed array.
return Math.max.apply(null, a); // Number
},
median: function(/* Number[] */a){
// summary:
// Returns the value closest to the middle from a sorted version of the passed array.
var t = a.slice(0).sort(function(a, b){ return a - b; });
return (t[Math.floor(a.length/2)] + t[Math.ceil(a.length/2)])/2; // Number
},
mode: function(/* Number[] */a){
// summary:
// Returns the mode from the passed array (number that appears the most often).
// This is not the most efficient method, since it requires a double scan, but
// is ensures accuracy.
var o = {}, r = 0, m = Number.MIN_VALUE;
dojo.forEach(a, function(v){
(o[v]!==undefined)?o[v]++:o[v]=1;
});
// we did the lookup map because we need the number that appears the most.
for(var p in o){
if(m < o[p]){
m = o[p], r = p;
}
}
return r; // Number
},
sum: function(/* Number[] */a){
// summary:
// Return the sum of all the numbers in the passed array. Does
// not check to make sure values within a are NaN (should simply
// return NaN).
var sum = 0;
dojo.forEach(a, function(n){
sum += n;
});
return sum; // Number
},
approxLin: function(a, pos){
// summary:
// Returns a linearly approximated value from an array using
// a normalized float position value.
// a: Number[]:
// a sorted numeric array to be used for the approximation.
// pos: Number:
// a position number from 0 to 1. If outside of this range it
// will be clamped.
// returns: Number
var p = pos * (a.length - 1), t = Math.ceil(p), f = t - 1;
if(f < 0){ return a[0]; }
if(t >= a.length){ return a[a.length - 1]; }
return a[f] * (t - p) + a[t] * (p - f); // Number
},
summary: function(a, alreadySorted){
// summary:
// Returns a non-parametric collection of summary statistics:
// the classic five-number summary extended to the Bowley's
// seven-figure summary.
// a: Number[]:
// a numeric array to be appraised.
// alreadySorted: Boolean?:
// a Boolean flag to indicated that the array is already sorted.
// This is an optional flag purely to improve the performance.
// If skipped, the array will be assumed unsorted.
// returns: Object
if(!alreadySorted){
a = a.slice(0); // copy the array
a.sort(function(a, b){ return a - b; }); // sort it properly
}
var l = st.approxLin,
result = {
// the five-number summary
min: a[0], // minimum
p25: l(a, 0.25), // lower quartile
med: l(a, 0.5), // median
p75: l(a, 0.75), // upper quartile
max: a[a.length - 1], // maximum
// extended to the Bowley's seven-figure summary
p10: l(a, 0.1), // first decile
p90: l(a, 0.9) // last decile
};
return result; // Object
}
});
return dojox.math.stats;
});