178 lines
5.4 KiB
JavaScript
178 lines
5.4 KiB
JavaScript
//>>built
|
|
// wrapped by build app
|
|
define("dojox/lang/functional/binrec", ["dijit","dojo","dojox","dojo/require!dojox/lang/functional/lambda,dojox/lang/functional/util"], function(dijit,dojo,dojox){
|
|
dojo.provide("dojox.lang.functional.binrec");
|
|
|
|
dojo.require("dojox.lang.functional.lambda");
|
|
dojo.require("dojox.lang.functional.util");
|
|
|
|
// This module provides recursion combinators:
|
|
// - a binary recursion combinator.
|
|
|
|
// Acknoledgements:
|
|
// - recursion combinators are inspired by Manfred von Thun's article
|
|
// "Recursion Theory and Joy"
|
|
// (http://www.latrobe.edu.au/philosophy/phimvt/joy/j05cmp.html)
|
|
|
|
// Notes:
|
|
// - recursion combinators produce a function, which implements
|
|
// their respective recusion patterns. String lambdas are inlined, if possible.
|
|
|
|
(function(){
|
|
var df = dojox.lang.functional, inline = df.inlineLambda,
|
|
_x ="_x", _z_r_r_z_a = ["_z.r", "_r", "_z.a"];
|
|
|
|
df.binrec = function(
|
|
/*Function|String|Array*/ cond,
|
|
/*Function|String|Array*/ then,
|
|
/*Function|String|Array*/ before,
|
|
/*Function|String|Array*/ after){
|
|
// summary:
|
|
// Generates a function for the binary recursion pattern.
|
|
// All parameter functions are called in the context of "this" object.
|
|
// cond:
|
|
// The lambda expression, which is used to detect the termination of recursion.
|
|
// It accepts the same parameter as the generated recursive function itself.
|
|
// This function should return "true", if the recursion should be stopped,
|
|
// and the "then" part should be executed. Otherwise the recursion will proceed.
|
|
// then:
|
|
// The lambda expression, which is called upon termination of the recursion.
|
|
// It accepts the same parameters as the generated recursive function itself.
|
|
// The returned value will be returned as the value of the generated function.
|
|
// before:
|
|
// The lambda expression, which is called before the recursive step.
|
|
// It accepts the same parameter as the generated recursive function itself.
|
|
// The returned value should be an array of two variable, which are used to call
|
|
// the generated function recursively twice in row starting from the first item.
|
|
// above:
|
|
// The lambda expression, which is called after the recursive step.
|
|
// It accepts three parameters: two returned values from recursive steps, and
|
|
// the original array of parameters used with all other functions.
|
|
// The returned value will be returned as the value of the generated function.
|
|
|
|
var c, t, b, a, cs, ts, bs, as, dict1 = {}, dict2 = {},
|
|
add2dict = function(x){ dict1[x] = 1; };
|
|
if(typeof cond == "string"){
|
|
cs = inline(cond, _x, add2dict);
|
|
}else{
|
|
c = df.lambda(cond);
|
|
cs = "_c.apply(this, _x)";
|
|
dict2["_c=_t.c"] = 1;
|
|
}
|
|
if(typeof then == "string"){
|
|
ts = inline(then, _x, add2dict);
|
|
}else{
|
|
t = df.lambda(then);
|
|
ts = "_t.apply(this, _x)";
|
|
}
|
|
if(typeof before == "string"){
|
|
bs = inline(before, _x, add2dict);
|
|
}else{
|
|
b = df.lambda(before);
|
|
bs = "_b.apply(this, _x)";
|
|
dict2["_b=_t.b"] = 1;
|
|
}
|
|
if(typeof after == "string"){
|
|
as = inline(after, _z_r_r_z_a, add2dict);
|
|
}else{
|
|
a = df.lambda(after);
|
|
as = "_a.call(this, _z.r, _r, _z.a)";
|
|
dict2["_a=_t.a"] = 1;
|
|
}
|
|
var locals1 = df.keys(dict1), locals2 = df.keys(dict2),
|
|
f = new Function([], "var _x=arguments,_y,_z,_r".concat( // Function
|
|
locals1.length ? "," + locals1.join(",") : "",
|
|
locals2.length ? ",_t=_x.callee," + locals2.join(",") : "",
|
|
t ? (locals2.length ? ",_t=_t.t" : "_t=_x.callee.t") : "",
|
|
";while(!",
|
|
cs,
|
|
"){_r=",
|
|
bs,
|
|
";_y={p:_y,a:_r[1]};_z={p:_z,a:_x};_x=_r[0]}for(;;){do{_r=",
|
|
ts,
|
|
";if(!_z)return _r;while(\"r\" in _z){_r=",
|
|
as,
|
|
";if(!(_z=_z.p))return _r}_z.r=_r;_x=_y.a;_y=_y.p}while(",
|
|
cs,
|
|
");do{_r=",
|
|
bs,
|
|
";_y={p:_y,a:_r[1]};_z={p:_z,a:_x};_x=_r[0]}while(!",
|
|
cs,
|
|
")}"
|
|
));
|
|
if(c){ f.c = c; }
|
|
if(t){ f.t = t; }
|
|
if(b){ f.b = b; }
|
|
if(a){ f.a = a; }
|
|
return f;
|
|
};
|
|
})();
|
|
|
|
/*
|
|
For documentation only:
|
|
|
|
1) The original recursive version:
|
|
|
|
var binrec1 = function(cond, then, before, after){
|
|
var cond = df.lambda(cond),
|
|
then = df.lambda(then),
|
|
before = df.lambda(before),
|
|
after = df.lambda(after);
|
|
return function(){
|
|
if(cond.apply(this, arguments)){
|
|
return then.apply(this, arguments);
|
|
}
|
|
var args = before.apply(this, arguments);
|
|
var ret1 = arguments.callee.apply(this, args[0]);
|
|
var ret2 = arguments.callee.apply(this, args[1]);
|
|
return after.call(this, ret1, ret2, arguments);
|
|
};
|
|
};
|
|
|
|
2) The original iterative version (before minification and inlining):
|
|
|
|
var binrec2 = function(cond, then, before, after){
|
|
var cond = df.lambda(cond),
|
|
then = df.lambda(then),
|
|
before = df.lambda(before),
|
|
after = df.lambda(after);
|
|
return function(){
|
|
var top1, top2, ret, args = arguments;
|
|
// first part: start the pump
|
|
while(!cond.apply(this, args)){
|
|
ret = before.apply(this, args);
|
|
top1 = {prev: top1, args: ret[1]};
|
|
top2 = {prev: top2, args: args};
|
|
args = ret[0];
|
|
}
|
|
for(;;){
|
|
// second part: mop up
|
|
do{
|
|
ret = then.apply(this, args);
|
|
if(!top2){
|
|
return ret;
|
|
}
|
|
while("ret" in top2){
|
|
ret = after.call(this, top2.ret, ret, top2.args);
|
|
if(!(top2 = top2.prev)){
|
|
return ret;
|
|
}
|
|
}
|
|
top2.ret = ret;
|
|
args = top1.args;
|
|
top1 = top1.prev;
|
|
}while(cond.apply(this, args));
|
|
// first part (encore)
|
|
do{
|
|
ret = before.apply(this, args);
|
|
top1 = {prev: top1, args: ret[1]};
|
|
top2 = {prev: top2, args: args};
|
|
args = ret[0];
|
|
}while(!cond.apply(this, args));
|
|
}
|
|
};
|
|
};
|
|
|
|
*/
|
|
});
|