//>>built // wrapped by build app define("dojox/lang/functional/tailrec", ["dijit","dojo","dojox","dojo/require!dojox/lang/functional/lambda,dojox/lang/functional/util"], function(dijit,dojo,dojox){ dojo.provide("dojox.lang.functional.tailrec"); dojo.require("dojox.lang.functional.lambda"); dojo.require("dojox.lang.functional.util"); // This module provides recursion combinators: // - a tail recursion combinator. // Acknoledgements: // - recursion combinators are inspired by Manfred von Thun's article // "Recursion Theory and Joy" // (http://www.latrobe.edu.au/philosophy/phimvt/joy/j05cmp.html) // Notes: // - recursion combinators produce a function, which implements // their respective recusion patterns. String lambdas are inlined, if possible. (function(){ var df = dojox.lang.functional, inline = df.inlineLambda, _x ="_x"; df.tailrec = function( /*Function|String|Array*/ cond, /*Function|String|Array*/ then, /*Function|String|Array*/ before){ // summary: // Generates a function for the tail recursion pattern. This is the simplified // version of the linear recursive combinator without the "after" function, // and with the modified "before" function. All parameter functions are called // in the context of "this" object. // cond: // The lambda expression, which is used to detect the termination of recursion. // It accepts the same parameter as the generated recursive function itself. // This function should return "true", if the recursion should be stopped, // and the "then" part should be executed. Otherwise the recursion will proceed. // then: // The lambda expression, which is called upon termination of the recursion. // It accepts the same parameters as the generated recursive function itself. // The returned value will be returned as the value of the generated function. // before: // The lambda expression, which is called before the recursive step. // It accepts the same parameter as the generated recursive function itself, // and returns an array of arguments for the next recursive call of // the generated function. var c, t, b, cs, ts, bs, dict1 = {}, dict2 = {}, add2dict = function(x){ dict1[x] = 1; }; if(typeof cond == "string"){ cs = inline(cond, _x, add2dict); }else{ c = df.lambda(cond); cs = "_c.apply(this, _x)"; dict2["_c=_t.c"] = 1; } if(typeof then == "string"){ ts = inline(then, _x, add2dict); }else{ t = df.lambda(then); ts = "_t.t.apply(this, _x)"; } if(typeof before == "string"){ bs = inline(before, _x, add2dict); }else{ b = df.lambda(before); bs = "_b.apply(this, _x)"; dict2["_b=_t.b"] = 1; } var locals1 = df.keys(dict1), locals2 = df.keys(dict2), f = new Function([], "var _x=arguments,_t=_x.callee,_c=_t.c,_b=_t.b".concat( // Function locals1.length ? "," + locals1.join(",") : "", locals2.length ? ",_t=_x.callee," + locals2.join(",") : t ? ",_t=_x.callee" : "", ";for(;!", cs, ";_x=", bs, ");return ", ts )); if(c){ f.c = c; } if(t){ f.t = t; } if(b){ f.b = b; } return f; }; })(); /* For documentation only: 1) The original recursive version: var tailrec1 = function(cond, then, before){ var cond = df.lambda(cond), then = df.lambda(then), before = df.lambda(before); return function(){ if(cond.apply(this, arguments)){ return then.apply(this, arguments); } var args = before.apply(this, arguments); return arguments.callee.apply(this, args); }; }; 2) The original iterative version (before minification and inlining): var tailrec2 = function(cond, then, before){ var cond = df.lambda(cond), then = df.lambda(then), before = df.lambda(before); return function(){ var args = arguments; for(; !cond.apply(this, args); args = before.apply(this, args)); return then.apply(this, args); }; }; */ });