//>>built define("dojox/gfx3d/scheduler", [ "dojo/_base/lang", "dojo/_base/array", // dojo.forEach, dojo.every "dojo/_base/declare", // dojo.declare "./_base", "./vector" ], function(lang, arrayUtil, declare, gfx3d, vectorUtil){ gfx3d.scheduler = { zOrder: function(buffer, order){ order = order ? order : gfx3d.scheduler.order; buffer.sort(function(a, b){ return order(b) - order(a); }); return buffer; }, bsp: function(buffer, outline){ // console.debug("BSP scheduler"); outline = outline ? outline : gfx3d.scheduler.outline; var p = new gfx3d.scheduler.BinarySearchTree(buffer[0], outline); arrayUtil.forEach(buffer.slice(1), function(item){ p.add(item, outline); }); return p.iterate(outline); }, // default implementation order: function(it){ return it.getZOrder(); }, outline: function(it){ return it.getOutline(); } }; var BST = declare("dojox.gfx3d.scheduler.BinarySearchTree", null, { constructor: function(obj, outline){ // summary: build the binary search tree, using binary space partition algorithm. // The idea is for any polygon, for example, (a, b, c), the space is divided by // the plane into two space: plus and minus. // // for any arbitary vertex p, if(p - a) dotProduct n = 0, p is inside the plane, // > 0, p is in the plus space, vice versa for minus space. // n is the normal vector that is perpendicular the plate, defined as: // n = ( b - a) crossProduct ( c - a ) // // in this implementation, n is declared as normal, ,a is declared as orient. // // obj: object: dojox.gfx3d.Object this.plus = null; this.minus = null; this.object = obj; var o = outline(obj); this.orient = o[0]; this.normal = vectorUtil.normalize(o); }, add: function(obj, outline){ var epsilon = 0.5, o = outline(obj), v = vectorUtil, n = this.normal, a = this.orient, BST = gfx3d.scheduler.BinarySearchTree; if( arrayUtil.every(o, function(item){ return Math.floor(epsilon + v.dotProduct(n, v.substract(item, a))) <= 0; }) ){ if(this.minus){ this.minus.add(obj, outline); }else{ this.minus = new BST(obj, outline); } }else if( arrayUtil.every(o, function(item){ return Math.floor(epsilon + v.dotProduct(n, v.substract(item, a))) >= 0; }) ){ if(this.plus){ this.plus.add(obj, outline); } else { this.plus = new BST(obj, outline); } }else{ /* arrayUtil.forEach(o, function(item){ console.debug(v.dotProduct(n, v.substract(item, a))); }); */ throw "The case: polygon cross siblings' plate is not implemented yet"; } }, iterate: function(outline){ var epsilon = 0.5; var v = vectorUtil; var sorted = []; var subs = null; // FIXME: using Infinity here? var view = {x: 0, y: 0, z: -10000}; if(Math.floor( epsilon + v.dotProduct(this.normal, v.substract(view, this.orient))) <= 0){ subs = [this.plus, this.minus]; }else{ subs = [this.minus, this.plus]; } if(subs[0]){ sorted = sorted.concat(subs[0].iterate()); } sorted.push(this.object); if(subs[1]){ sorted = sorted.concat(subs[1].iterate()); } return sorted; } }); gfx3d.drawer = { conservative: function(todos, objects, viewport){ // console.debug('conservative draw'); arrayUtil.forEach(this.objects, function(item){ item.destroy(); }); arrayUtil.forEach(objects, function(item){ item.draw(viewport.lighting); }); }, chart: function(todos, objects, viewport){ // NOTE: ondemand may require the todos' objects to use setShape // to redraw themselves to maintain the z-order. // console.debug('chart draw'); arrayUtil.forEach(this.todos, function(item){ item.draw(viewport.lighting); }); } // More aggrasive optimization may re-order the DOM nodes using the order // of objects, and only elements of todos call setShape. }; var api = { scheduler: gfx3d.scheduler, drawer: gfx3d.drawer, BinarySearchTree: BST }; return api; });