//>>built define("dojox/calc/toFrac", [ "dojo/_base/lang", "dojox/calc/_Executor" ], function(lang, calc) { var multiples; function _fracHashInit(){ var sqrts = [ 5,6,7,10,11,13,14,15,17,19,21,22,23,26,29, 30,31,33,34,35,37,38,39,41,42,43,46,47,51,53,55,57,58,59, 61,62,65,66,67,69,70,71,73,74,77,78,79,82,83,85,86,87,89,91,93,94,95,97 ]; multiples = { "1":1, "\u221A(2)":Math.sqrt(2), "\u221A(3)":Math.sqrt(3), "pi":Math.PI }; // populate the rest of the multiples array for(var i in sqrts){ var n = sqrts[i]; multiples["\u221A("+n+")"] = Math.sqrt(n); } multiples["\u221A(pi)"] = Math.sqrt(Math.PI); } function _fracLookup(number){ function findSimpleFraction(fraction){ var denom1Low = Math.floor(1 / fraction); // fraction <= 1/denom1Low var quotient = calc.approx(1 / denom1Low); if(quotient == fraction){ return { n:1, d:denom1Low }; } var denom1High = denom1Low + 1; // 1/denom1High <= fraction < 1/denom1Low quotient = calc.approx(1 / denom1High); if(quotient == fraction){ return { n:1, d:denom1High }; } if(denom1Low >= 50){ return null; } // only 1's in the numerator beyond this point // 1/denom1High < fraction < 1/denom1Low var denom2 = denom1Low + denom1High; quotient = calc.approx(2 / denom2); // 1/denom1High < 2/(denom1Low+denom1High) < 1/denom1Low if(quotient == fraction){ return { n:2, d:denom2 }; } if(denom1Low >= 34){ return null; } // only 1's and 2's in the numerator beyond this point var less2 = fraction < quotient; // if less2 // 1/denom1High < fraction < 2/(denom1Low+denom1High) // else // 2/(denom1Low+denom1High) < fraction < 1/denom1Low var denom4 = denom2 * 2 + (less2 ? 1 : -1); quotient = calc.approx(4 / denom4); // 1/denom1High < 4/(2*denom1Low+2*denom1High+1) < 2/(denom1Low+denom1High) < 4/(2*denom1Low+2*denom1High-1) < 1/denom1Low if(quotient == fraction){ return { n:4, d:denom4 }; } var less4 = fraction < quotient; // we've already checked for 1, 2 and 4, but now see if we need to check for 3 in the numerator if((less2 && !less4) || (!less2 && less4)){ var denom3 = (denom2 + denom4) >> 1; quotient = calc.approx(3 / denom3); // 1/denom1High < 4/(2*denom1Low+2*denom1High+1) < 3/((3*denom1Low+3*denom1High+1)/2) < 2/(denom1Low+denom1High) < 3/((3*denom1Low+3*denom1High-1)/2) < 4/(2*denom1Low+2*denom1High-1) < 1/denom1Low if(quotient == fraction){ return { n:3, d:denom3 }; } } if(denom1Low >= 20){ return null; } // only 1's, 2's, 3's, and 4's in the numerator beyond this point // if less2 // if less4 // 1/denom1High < fraction < 4/(2*denom1Low+2*denom1High+1) // else // 4/(2*denom1Low+2*denom1High+1) < fraction < 2/(denom1Low+denom1High) // else // if less4 // 2/(denom1Low+denom1High) < fraction < 4/(2*denom1Low+2*denom1High-1) // else // 4/(2*denom1Low+2*denom1High-1) < fraction < 1/denom1Low var smallestDenom = denom2 + denom1Low * 2; var largestDenom = smallestDenom + 2; for(var numerator = 5; smallestDenom <= 100; numerator++){ // start with 5 in the numerator smallestDenom += denom1Low; largestDenom += denom1High; var startDenom = less2 ? ((largestDenom + smallestDenom + 1) >> 1) : smallestDenom; var stopDenom = less2 ? largestDenom : ((largestDenom + smallestDenom - 1) >> 1); startDenom = less4 ? ((startDenom + stopDenom) >> 1) : startDenom; stopDenom = less4 ? stopDenom : ((startDenom + stopDenom) >> 1); for(var thisDenom = startDenom; thisDenom <= stopDenom; thisDenom++){ if(numerator & 1 == 0 && thisDenom & 1 == 0){ continue; } // skip where n and d are both even quotient = calc.approx(numerator / thisDenom); if(quotient == fraction){ return { n:numerator, d:thisDenom }; } if(quotient < fraction){ break; } // stop since the values will just get smaller } } return null; } number = Math.abs(number); for(var mt in multiples){ var multiple = multiples[mt]; var simpleFraction = number / multiple; var wholeNumber = Math.floor(simpleFraction); simpleFraction = calc.approx(simpleFraction - wholeNumber); if(simpleFraction == 0){ return { mt:mt, m:multiple, n:wholeNumber, d:1 }; }else{ var a = findSimpleFraction(simpleFraction); if(!a){ continue; } return { mt:mt, m:multiple, n:(wholeNumber * a.d + a.n), d:a.d }; } } return null; } // make the hash _fracHashInit(); // add toFrac to the calculator return lang.mixin(calc, { toFrac: function(number){// get a string fraction for a decimal with a set range of numbers, based on the hash var f = _fracLookup(number); return f ? ((number < 0 ? '-' : '') + (f.m == 1 ? '' : (f.n == 1 ? '' : (f.n + '*'))) + (f.m == 1 ? f.n : f.mt) + ((f.d == 1 ? '' : '/' + f.d))) : number; //return f ? ((number < 0 ? '-' : '') + (f.m == 1 ? '' : (f.n == 1 ? '' : (f.n + '*'))) + (f.m == 1 ? f.n : f.mt) + '/' + f.d) : number; }, pow: function(base, exponent){// pow benefits from toFrac because it can overcome many of the limitations set before the standard Math.pow // summary: // Computes base ^ exponent // Wrapper to Math.pow(base, exponent) to handle (-27) ^ (1/3) function isInt(n){ return Math.floor(n) == n; } if(base>0||isInt(exponent)){ return Math.pow(base, exponent); }else{ var f = _fracLookup(exponent); if(base >= 0){ return (f && f.m == 1) ? Math.pow(Math.pow(base, 1 / f.d), exponent < 0 ? -f.n : f.n) // 32 ^ (2/5) is much more accurate if done as (32 ^ (1/5)) ^ 2 : Math.pow(base, exponent); }else{ // e.g. (1/3) root of -27 = -3, 1 / exponent must be an odd integer for a negative base return (f && f.d & 1) ? Math.pow(Math.pow(-Math.pow(-base, 1 / f.d), exponent < 0 ? -f.n : f.n), f.m) : NaN; } } } }); /* function reduceError(number){ var f = _fracLookup(number); if(!f){ f = _fracLookup(number); } return f ? ((number < 0 ? -1 : 1) * f.n * f.m / f.d) : number; } */ });