mirror of
https://github.com/ptitSeb/Serious-Engine
synced 2024-11-22 18:30:27 +01:00
dbe524f0b2
except for EntitiesMP/Fish.es which I'm not sure about, and in Computer.cpp the weird "if (_iActiveMessage < _acmMessages.Count()==0)" construct whichs intention I didn't fully grasp, either.
434 lines
14 KiB
C++
434 lines
14 KiB
C++
/* Copyright (c) 2002-2012 Croteam Ltd.
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of version 2 of the GNU General Public License as published by
|
|
the Free Software Foundation
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
|
|
|
|
#include "Engine/StdH.h"
|
|
|
|
#include <Engine/Math/Projection.h>
|
|
|
|
#include <Engine/Math/TextureMapping.h>
|
|
#include <Engine/Math/OBBox.h>
|
|
|
|
#include <Engine/Math/Geometry.inl>
|
|
#include <Engine/Math/Clipping.inl>
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
// CIsometricProjection3D
|
|
|
|
/*
|
|
* Prepare for projecting.
|
|
*/
|
|
void CIsometricProjection3D::Prepare(void)
|
|
{
|
|
FLOATmatrix3D t3dObjectStretch; // matrix for object stretch
|
|
FLOATmatrix3D t3dObjectRotation; // matrix for object angles
|
|
|
|
// calc. matrices for viewer and object angles and stretch
|
|
MakeRotationMatrix(t3dObjectRotation, pr_ObjectPlacement.pl_OrientationAngle); // object normally
|
|
MakeInverseRotationMatrix(pr_ViewerRotationMatrix, pr_ViewerPlacement.pl_OrientationAngle); // viewer inverse
|
|
t3dObjectStretch.Diagonal(pr_ObjectStretch);
|
|
pr_vViewerPosition = pr_ViewerPlacement.pl_PositionVector;
|
|
BOOL bXInverted = pr_ObjectStretch(1)<0;
|
|
BOOL bYInverted = pr_ObjectStretch(2)<0;
|
|
BOOL bZInverted = pr_ObjectStretch(3)<0;
|
|
|
|
// DG: this is true if either one of X,Y,Z is inverted, or all three
|
|
// but not if two or none are inverted.
|
|
pr_bInverted = (bXInverted != bYInverted) != bZInverted;
|
|
|
|
// if the projection is mirrored
|
|
if (pr_bMirror) {
|
|
// reflect viewer
|
|
ReflectPositionVectorByPlane(pr_plMirror, pr_vViewerPosition);
|
|
ReflectRotationMatrixByPlane_rows(pr_plMirror, pr_ViewerRotationMatrix);
|
|
// invert inversion
|
|
pr_bInverted = !pr_bInverted;
|
|
}
|
|
|
|
// calculate screen center
|
|
pr_ScreenCenter = pr_ScreenBBox.Center();
|
|
|
|
// if the object is face-forward
|
|
if (pr_bFaceForward) {
|
|
// if it turns only heading
|
|
if (pr_bHalfFaceForward) {
|
|
// get the y-axis vector of object rotation
|
|
FLOAT3D vY(t3dObjectRotation(1,2), t3dObjectRotation(2,2), t3dObjectRotation(3,2));
|
|
// find z axis of viewer
|
|
FLOAT3D vViewerZ(
|
|
pr_ViewerRotationMatrix(3,1),
|
|
pr_ViewerRotationMatrix(3,2),
|
|
pr_ViewerRotationMatrix(3,3));
|
|
// calculate x and z axis vectors to make object head towards viewer
|
|
FLOAT3D vX = (-vViewerZ)*vY;
|
|
vX.Normalize();
|
|
FLOAT3D vZ = vY*vX;
|
|
// compose the rotation matrix back from those angles
|
|
t3dObjectRotation(1,1) = vX(1); t3dObjectRotation(1,2) = vY(1); t3dObjectRotation(1,3) = vZ(1);
|
|
t3dObjectRotation(2,1) = vX(2); t3dObjectRotation(2,2) = vY(2); t3dObjectRotation(2,3) = vZ(2);
|
|
t3dObjectRotation(3,1) = vX(3); t3dObjectRotation(3,2) = vY(3); t3dObjectRotation(3,3) = vZ(3);
|
|
|
|
// first apply object stretch then object rotation and then viewer rotation
|
|
pr_mDirectionRotation = pr_ViewerRotationMatrix*t3dObjectRotation;
|
|
pr_RotationMatrix = pr_mDirectionRotation*t3dObjectStretch;
|
|
// if it is fully face forward
|
|
} else {
|
|
// apply object stretch only
|
|
pr_mDirectionRotation.Diagonal(1);
|
|
pr_RotationMatrix = t3dObjectStretch;
|
|
}
|
|
} else {
|
|
// first apply object stretch then object rotation and then viewer rotation
|
|
pr_mDirectionRotation = pr_ViewerRotationMatrix*t3dObjectRotation;
|
|
pr_RotationMatrix = pr_mDirectionRotation*t3dObjectStretch;
|
|
}
|
|
|
|
// make clip planes
|
|
MakeClipPlane(FLOAT3D(+ipr_ZoomFactor,0,0), pr_ScreenBBox.Min()(1)-pr_ScreenCenter(1), pr_plClipL);
|
|
MakeClipPlane(FLOAT3D(-ipr_ZoomFactor,0,0), pr_ScreenCenter(1)-pr_ScreenBBox.Max()(1), pr_plClipR);
|
|
MakeClipPlane(FLOAT3D(0,-ipr_ZoomFactor,0), pr_ScreenBBox.Min()(2)-pr_ScreenCenter(2), pr_plClipU);
|
|
MakeClipPlane(FLOAT3D(0,+ipr_ZoomFactor,0), pr_ScreenCenter(2)-pr_ScreenBBox.Max()(2), pr_plClipD);
|
|
|
|
// calc. offset of object from viewer
|
|
pr_TranslationVector = pr_ObjectPlacement.pl_PositionVector - pr_vViewerPosition;
|
|
// rotate offset only by viewer angles
|
|
pr_TranslationVector = pr_TranslationVector*pr_ViewerRotationMatrix;
|
|
// transform handle from object space to viewer space and add it to the offset
|
|
pr_TranslationVector -= pr_vObjectHandle*pr_RotationMatrix;
|
|
|
|
// mark as prepared
|
|
pr_Prepared = TRUE;
|
|
// calculate constant value used for calculating z-buffer k-value from vertex's z coordinate
|
|
pr_fDepthBufferFactor = -pr_NearClipDistance;
|
|
pr_fDepthBufferMul = (pr_fDepthBufferFar-pr_fDepthBufferNear);
|
|
pr_fDepthBufferAdd = pr_fDepthBufferNear;
|
|
}
|
|
|
|
/*
|
|
* Project 3D object point into 3D view space, before clipping.
|
|
*/
|
|
void CIsometricProjection3D::PreClip(const FLOAT3D &v3dObjectPoint,
|
|
FLOAT3D &v3dTransformedPoint) const
|
|
{
|
|
// check that the projection object is prepared for projecting
|
|
ASSERT(pr_Prepared);
|
|
|
|
// rotate and translate the point
|
|
v3dTransformedPoint = v3dObjectPoint*pr_RotationMatrix + pr_TranslationVector;
|
|
}
|
|
|
|
/*
|
|
* Project 3D object point into 3D view space, after clipping.
|
|
*/
|
|
void CIsometricProjection3D::PostClip( const FLOAT3D &v3dTransformedPoint,
|
|
FLOAT3D &v3dViewPoint) const
|
|
{
|
|
// check that the projection object is prepared for projecting
|
|
ASSERT(pr_Prepared);
|
|
// multiply X and Y coordinates with zoom factor and add the center of screen
|
|
v3dViewPoint(1) = pr_ScreenCenter(1) + v3dTransformedPoint(1) * ipr_ZoomFactor*pr_fViewStretch;
|
|
v3dViewPoint(2) = pr_ScreenCenter(2) - v3dTransformedPoint(2) * ipr_ZoomFactor*pr_fViewStretch;
|
|
}
|
|
|
|
|
|
void CIsometricProjection3D::PostClip( const FLOAT3D &v3dTransformedPoint, FLOAT fTransformedR,
|
|
FLOAT3D &v3dViewPoint, FLOAT &fViewR) const
|
|
{
|
|
// check that the projection object is prepared for projecting
|
|
ASSERT(pr_Prepared);
|
|
// multiply X and Y coordinates with zoom factor and add the center of screen
|
|
v3dViewPoint(1) = pr_ScreenCenter(1) + v3dTransformedPoint(1) * ipr_ZoomFactor*pr_fViewStretch;
|
|
v3dViewPoint(2) = pr_ScreenCenter(2) - v3dTransformedPoint(2) * ipr_ZoomFactor*pr_fViewStretch;
|
|
fViewR = fTransformedR*ipr_ZoomFactor*pr_fViewStretch;
|
|
}
|
|
|
|
|
|
/* Test if a sphere in view space is inside view frustum. */
|
|
INDEX CIsometricProjection3D::TestSphereToFrustum(const FLOAT3D &vViewPoint, FLOAT fRadius) const
|
|
{
|
|
ASSERT( pr_Prepared && fRadius>=0);
|
|
const FLOAT fX = vViewPoint(1);
|
|
const FLOAT fY = vViewPoint(2);
|
|
const FLOAT fZ = vViewPoint(3);
|
|
INDEX iPass = 1;
|
|
|
|
// check to near
|
|
if( fZ-fRadius>-pr_NearClipDistance) {
|
|
return -1;
|
|
} else if( fZ+fRadius>-pr_NearClipDistance) {
|
|
iPass = 0;
|
|
}
|
|
// check to far
|
|
if( pr_FarClipDistance>0) {
|
|
if( fZ+fRadius<-pr_FarClipDistance) {
|
|
return -1;
|
|
} else if( fZ-fRadius<-pr_FarClipDistance) {
|
|
iPass = 0;
|
|
}
|
|
}
|
|
// check to left
|
|
FLOAT fL = fX*pr_plClipL(1) - pr_plClipL.Distance();
|
|
if( fL<-fRadius) {
|
|
return -1;
|
|
} else if( fL<fRadius) {
|
|
iPass = 0;
|
|
}
|
|
// check to right
|
|
FLOAT fR = fX*pr_plClipR(1) - pr_plClipR.Distance();
|
|
if( fR<-fRadius) {
|
|
return -1;
|
|
} else if( fR<fRadius) {
|
|
iPass = 0;
|
|
}
|
|
// check to up
|
|
FLOAT fU = fY*pr_plClipU(2) - pr_plClipU.Distance();
|
|
if( fU<-fRadius) {
|
|
return -1;
|
|
} else if( fU<fRadius) {
|
|
iPass = 0;
|
|
}
|
|
// check to down
|
|
FLOAT fD = fY*pr_plClipD(2) - pr_plClipD.Distance();
|
|
if( fD<-fRadius) {
|
|
return -1;
|
|
} else if( fD<fRadius) {
|
|
iPass = 0;
|
|
}
|
|
// all done
|
|
return iPass;
|
|
}
|
|
|
|
|
|
/* Test if an oriented box in view space is inside view frustum. */
|
|
INDEX CIsometricProjection3D::TestBoxToFrustum(const FLOATobbox3D &box) const
|
|
{
|
|
ASSERT(pr_Prepared);
|
|
INDEX iPass = 1;
|
|
INDEX iTest;
|
|
|
|
// check to near
|
|
iTest = (INDEX) box.TestAgainstPlane(FLOATplane3D(FLOAT3D(0,0,-1), pr_NearClipDistance));
|
|
if( iTest<0) {
|
|
return -1;
|
|
} else if( iTest==0) {
|
|
iPass = 0;
|
|
}
|
|
// check to far
|
|
if( pr_FarClipDistance>0) {
|
|
iTest = (INDEX) box.TestAgainstPlane(FLOATplane3D(FLOAT3D(0,0,1), -pr_FarClipDistance));
|
|
if( iTest<0) {
|
|
return -1;
|
|
} else if( iTest==0) {
|
|
iPass = 0;
|
|
}
|
|
}
|
|
// check to left
|
|
iTest = (INDEX) box.TestAgainstPlane(pr_plClipL);
|
|
if( iTest<0) {
|
|
return -1;
|
|
} else if( iTest==0) {
|
|
iPass = 0;
|
|
}
|
|
// check to right
|
|
iTest = (INDEX) box.TestAgainstPlane(pr_plClipR);
|
|
if( iTest<0) {
|
|
return -1;
|
|
} else if( iTest==0) {
|
|
iPass = 0;
|
|
}
|
|
// check to up
|
|
iTest = (INDEX) box.TestAgainstPlane(pr_plClipU);
|
|
if( iTest<0) {
|
|
return -1;
|
|
} else if( iTest==0) {
|
|
iPass = 0;
|
|
}
|
|
// check to down
|
|
iTest = (INDEX) box.TestAgainstPlane(pr_plClipD);
|
|
if( iTest<0) {
|
|
return -1;
|
|
} else if( iTest==0) {
|
|
iPass = 0;
|
|
}
|
|
// all done
|
|
return iPass;
|
|
}
|
|
|
|
/*
|
|
* Project 3D object point into 3D view space.
|
|
*/
|
|
void CIsometricProjection3D::ProjectCoordinate(const FLOAT3D &v3dObjectPoint,
|
|
FLOAT3D &v3dViewPoint) const
|
|
{
|
|
// rotate and translate the point
|
|
v3dViewPoint = v3dObjectPoint*pr_RotationMatrix + pr_TranslationVector;
|
|
// multiply X and Y coordinates with zoom factor and add the center of screen
|
|
v3dViewPoint(1) = pr_ScreenCenter(1) + v3dViewPoint(1) * ipr_ZoomFactor*pr_fViewStretch;
|
|
v3dViewPoint(2) = pr_ScreenCenter(2) + v3dViewPoint(2) * ipr_ZoomFactor*pr_fViewStretch;
|
|
}
|
|
|
|
/*
|
|
* Get a distance of object point from the viewer.
|
|
*/
|
|
FLOAT CIsometricProjection3D::GetDistance(const FLOAT3D &v3dObjectPoint) const
|
|
{
|
|
// get just the z coordinate of the point in viewer space
|
|
return
|
|
v3dObjectPoint(1)*pr_RotationMatrix(3,1)+
|
|
v3dObjectPoint(2)*pr_RotationMatrix(3,2)+
|
|
v3dObjectPoint(3)*pr_RotationMatrix(3,3)+
|
|
pr_TranslationVector(3);
|
|
}
|
|
|
|
/*
|
|
* Project 3D object direction vector into 3D view space.
|
|
*/
|
|
void CIsometricProjection3D::ProjectDirection(const FLOAT3D &v3dObjectPoint,
|
|
FLOAT3D &v3dViewPoint) const
|
|
{
|
|
// rotate the direction
|
|
v3dViewPoint = v3dObjectPoint*pr_mDirectionRotation;
|
|
}
|
|
|
|
/*
|
|
* Project 3D object axis aligned bounding box into 3D view space.
|
|
*/
|
|
void CIsometricProjection3D::ProjectAABBox(const FLOATaabbox3D &boxObject,
|
|
FLOATaabbox3D &boxView) const
|
|
{
|
|
ASSERTALWAYS( "This is not yet implemented");
|
|
}
|
|
|
|
/*
|
|
* Project 3D object plane into 3D view space.
|
|
*/
|
|
void CIsometricProjection3D::Project(const FLOATplane3D &p3dObjectPlane,
|
|
FLOATplane3D &p3dTransformedPlane) const
|
|
{
|
|
// check that the projection object is prepared for projecting
|
|
ASSERT(pr_Prepared);
|
|
|
|
// rotate and translate the plane
|
|
p3dTransformedPlane = p3dObjectPlane*pr_mDirectionRotation + pr_TranslationVector;
|
|
}
|
|
|
|
/* Calculate plane gradient for a plane in 3D view space. */
|
|
void CIsometricProjection3D::MakeOoKGradient(const FLOATplane3D &plViewerPlane, CPlanarGradients &pgOoK) const
|
|
{
|
|
//ASSERTALWAYS("Function not supported");
|
|
}
|
|
|
|
/*
|
|
* Clip a line.
|
|
*/
|
|
ULONG CIsometricProjection3D::ClipLine(FLOAT3D &v3dPoint0, FLOAT3D &v3dPoint1) const
|
|
{
|
|
// check that the projection object is prepared for projecting
|
|
ASSERT(pr_Prepared);
|
|
|
|
// front clip plane is exactly the viewplane
|
|
//const FLOATplane3D plFrontClip(FLOAT3D(0.0f,0.0f,-1.0f), 0.0f);
|
|
|
|
ULONG ulCode0 = LCFVERTEX0(LCF_UNCLIPPED);
|
|
ULONG ulCode1 = LCFVERTEX1(LCF_UNCLIPPED);
|
|
|
|
// clip the line by each plane at the time, skip if some removes entire line
|
|
if (ClipLineByNearPlane(v3dPoint0, v3dPoint1, 0.0f, ulCode0, ulCode1, LCF_NEAR)
|
|
// if something remains
|
|
) {
|
|
// return the clip code for both vertices
|
|
return ulCode0 | ulCode1;
|
|
// if some of the planes removed entire line
|
|
} else {
|
|
// return the code that tells that entire line is removed
|
|
return LCF_EDGEREMOVED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get placement for a ray through a projected point.
|
|
*/
|
|
void CIsometricProjection3D::RayThroughPoint(const FLOAT3D &v3dViewPoint,
|
|
CPlacement3D &plRay) const
|
|
{
|
|
// check that the projection object is prepared for projecting
|
|
ASSERT(pr_Prepared);
|
|
|
|
/* The direction in object space is exactly the viewer direction, while
|
|
* the position is back-transformed position of the point from the view plane
|
|
* to object space.
|
|
*/
|
|
|
|
// just copy the orientation angle
|
|
plRay.pl_OrientationAngle = pr_ViewerPlacement.pl_OrientationAngle;
|
|
|
|
// the point on view plane has a view z coordinate of 0
|
|
FLOAT3D vViewPlanePoint;
|
|
vViewPlanePoint(1) = (v3dViewPoint(1)-pr_ScreenCenter(1)) / ipr_ZoomFactor;
|
|
vViewPlanePoint(2) = (v3dViewPoint(2)-pr_ScreenCenter(2)) / ipr_ZoomFactor;
|
|
vViewPlanePoint(3) = 0.0f;
|
|
// back transform the point to get the position vector
|
|
plRay.pl_PositionVector = (vViewPlanePoint-pr_TranslationVector)*!pr_RotationMatrix;
|
|
}
|
|
|
|
/*
|
|
* Check if an object-space plane is visible.
|
|
*/
|
|
BOOL CIsometricProjection3D::IsObjectPlaneVisible(const FLOATplane3D &p3dObjectPlane) const
|
|
{
|
|
// check that the projection object is prepared for projecting
|
|
ASSERT(pr_Prepared);
|
|
|
|
// the object plane is visible is it is not heading away from the view plane
|
|
return (p3dObjectPlane*pr_mDirectionRotation)(3)>0.0f;
|
|
}
|
|
|
|
/*
|
|
* Check if a viewer-space plane is visible.
|
|
*/
|
|
BOOL CIsometricProjection3D::IsViewerPlaneVisible(const FLOATplane3D &p3dViewerPlane) const
|
|
{
|
|
// check that the projection object is prepared for projecting
|
|
ASSERT(pr_Prepared);
|
|
|
|
// the object plane is visible is it is not heading away from the view plane
|
|
return p3dViewerPlane(3)>0.01f;
|
|
}
|
|
|
|
/*
|
|
* Calculate a mip-factor for a given object.
|
|
*/
|
|
// by its distance from viewer
|
|
FLOAT CIsometricProjection3D::MipFactor(FLOAT fDistance) const
|
|
{
|
|
// check that the projection object is prepared for projecting
|
|
ASSERT(pr_Prepared);
|
|
|
|
/* calculated using following formula:
|
|
k = log2(1024*z/xratio);
|
|
*/
|
|
return Log2(1024.0f/ipr_ZoomFactor);
|
|
}
|
|
// general mip-factor for target object
|
|
FLOAT CIsometricProjection3D::MipFactor(void) const
|
|
{
|
|
// check that the projection object is prepared for projecting
|
|
ASSERT(pr_Prepared);
|
|
|
|
/* calculated using following formula:
|
|
k = log2(1024*z/xratio);
|
|
*/
|
|
return Log2(1024.0f/ipr_ZoomFactor);
|
|
}
|