mirror of
https://github.com/ptitSeb/Serious-Engine
synced 2024-11-29 21:25:54 +01:00
1a2ccb8f50
Conflicts: Sources/Ecc/Parser.cpp Sources/Ecc/Scanner.cpp Sources/Engine/Base/Scanner.cpp Sources/Engine/GameAgent/GameAgent.cpp Sources/Engine/Graphics/Gfx_wrapper.h Sources/Engine/Network/Network.cpp Sources/Engine/Sound/SoundDecoder.h Sources/Engine/Templates/HashTableTemplate.cpp Sources/Engine/Terrain/Terrain.h Sources/EntitiesMP/ParticleCloudsHolder.es Sources/EntitiesMP/ParticleCloudsMarker.es Sources/SeriousSam/CDCheck.h Sources/SeriousSam/Menu.cpp Sources/SeriousSam/MenuGadgets.cpp Sources/SeriousSam/SeriousSam.cpp Sources/SeriousSam/SplashScreen.cpp Sources/SeriousSam/StdH.cpp Sources/SeriousSam/StdH.h Sources/Shaders/StdH.cpp
580 lines
18 KiB
C++
580 lines
18 KiB
C++
/* Copyright (c) 2002-2012 Croteam Ltd.
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of version 2 of the GNU General Public License as published by
|
|
the Free Software Foundation
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
|
|
|
|
#ifndef SE_INCL_VECTOR_H
|
|
#define SE_INCL_VECTOR_H
|
|
#ifdef PRAGMA_ONCE
|
|
#pragma once
|
|
#endif
|
|
|
|
#include <Engine/Base/Assert.h>
|
|
#include <Engine/Base/Types.h>
|
|
#include <Engine/Base/Stream.h>
|
|
#include <Engine/Math/Matrix.h>
|
|
#include <Engine/Math/Functions.h>
|
|
|
|
/*
|
|
* Template class for vector of arbitrary dimensions and arbitrary type of members
|
|
*/
|
|
template<class Type, int iDimensions>
|
|
class Vector {
|
|
public:
|
|
Type vector[iDimensions]; // array that holds the members
|
|
public:
|
|
/* Default constructor. */
|
|
__forceinline Vector(void);
|
|
/* Constructor from coordinates. */
|
|
__forceinline Vector(Type x1);
|
|
__forceinline Vector(Type x1, Type x2);
|
|
__forceinline Vector(Type x1, Type x2, Type x3);
|
|
__forceinline Vector(Type x1, Type x2, Type x3, Type x4);
|
|
/* Clear function */
|
|
__forceinline void Clear(void) {};
|
|
|
|
|
|
/* Conversion into scalar -- length of vector (Euclidian norm). */
|
|
__forceinline Type Length(void) const;
|
|
/* Conversion into scalar -- Manhattan norm of vector. */
|
|
__forceinline Type ManhattanNorm(void) const;
|
|
/* Conversion into scalar -- Max norm of vector. */
|
|
__forceinline Type MaxNorm(void) const;
|
|
|
|
/* Reference vector member by it's index (1-based indices!). */
|
|
__forceinline Type &operator()(int i);
|
|
__forceinline const Type &operator()(int i) const;
|
|
|
|
/* Normalize vector, i.e. make it a unit vector. */
|
|
__forceinline Vector<Type, iDimensions> &Normalize(void);
|
|
__forceinline Vector<Type, iDimensions> &SafeNormalize(void); // gives vector with (0,0,0) orientation if input is too small
|
|
|
|
/* Mathematical operators. */
|
|
// unary minus
|
|
__forceinline Vector<Type, iDimensions> &Flip(void);
|
|
__forceinline Vector<Type, iDimensions> operator-(void) const;
|
|
// between two vectors
|
|
__forceinline Vector<Type, iDimensions> operator+(const Vector<Type, iDimensions> &vector2) const;
|
|
__forceinline Vector<Type, iDimensions> &operator+=(const Vector<Type, iDimensions> &vector2);
|
|
__forceinline Vector<Type, iDimensions> operator-(const Vector<Type, iDimensions> &vector2) const;
|
|
__forceinline Vector<Type, iDimensions> &operator-=(const Vector<Type, iDimensions> &vector2);
|
|
// multiplication with scalar
|
|
__forceinline Vector<Type, iDimensions> &operator*=(const Type scalar);
|
|
__forceinline Vector<Type, iDimensions> operator*(const Type scalar) const;
|
|
// division with scalar
|
|
__forceinline Vector<Type, iDimensions> &operator/=(const Type scalar);
|
|
__forceinline Vector<Type, iDimensions> operator/(const Type scalar) const;
|
|
// multiplication by a square matrix (sides swapped -- see implementation for notes)
|
|
__forceinline Vector<Type, iDimensions> &operator*=(const Matrix<Type, iDimensions, iDimensions> &matrix2);
|
|
__forceinline Vector<Type, iDimensions> operator*(const Matrix<Type, iDimensions, iDimensions> &matrix2) const;
|
|
// scalar product - dot product, inner product
|
|
__forceinline Type operator%(const Vector<Type, iDimensions> &vector2) const;
|
|
// vector product - cross product, outer product
|
|
__forceinline Vector<Type, iDimensions> &operator*=(const Vector<Type, iDimensions> &vector2);
|
|
__forceinline Vector<Type, iDimensions> operator*(const Vector<Type, iDimensions> &vector2) const;
|
|
// comparing vectors
|
|
__forceinline BOOL operator==(const Vector<Type, iDimensions> &vector2) const;
|
|
__forceinline BOOL operator!=(const Vector<Type, iDimensions> &vector2) const;
|
|
|
|
/* Stream operations */
|
|
friend __forceinline CTStream &operator>>(CTStream &strm, Vector<Type, iDimensions> &vector) {
|
|
for (SLONG i = 0; i < iDimensions; i++)
|
|
strm>>vector.vector[i];
|
|
return strm;
|
|
}
|
|
friend __forceinline CTStream &operator<<(CTStream &strm, const Vector<Type, iDimensions> &vector) {
|
|
for (SLONG i = 0; i < iDimensions; i++)
|
|
strm<<vector.vector[i];
|
|
return strm;
|
|
}
|
|
};
|
|
|
|
|
|
// inline functions implementation
|
|
|
|
/*
|
|
* Default constructor.
|
|
*/
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions>::Vector(void) {}
|
|
|
|
|
|
/*
|
|
* Constructor from coordinates.
|
|
*/
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions>::Vector(Type x1)
|
|
{
|
|
ASSERT(iDimensions==1);
|
|
(*this)(1)=x1;
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions>::Vector(Type x1, Type x2)
|
|
{
|
|
ASSERT(iDimensions==2);
|
|
(*this)(1)=x1;
|
|
(*this)(2)=x2;
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions>::Vector(Type x1, Type x2, Type x3)
|
|
{
|
|
ASSERT(iDimensions==3);
|
|
(*this)(1)=x1;
|
|
(*this)(2)=x2;
|
|
(*this)(3)=x3;
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions>::Vector(Type x1, Type x2, Type x3, Type x4)
|
|
{
|
|
ASSERT(iDimensions==4);
|
|
(*this)(1)=x1;
|
|
(*this)(2)=x2;
|
|
(*this)(3)=x3;
|
|
(*this)(4)=x4;
|
|
}
|
|
|
|
|
|
/*
|
|
* Conversion into scalar -- length of vector.
|
|
*/
|
|
template<> __forceinline FLOAT Vector<FLOAT,3>::Length(void) const
|
|
{
|
|
return (FLOAT)sqrt( (DOUBLE)((*this)(1)*(*this)(1) + (*this)(2)*(*this)(2) + (*this)(3)*(*this)(3)));
|
|
}
|
|
|
|
template<> __forceinline DOUBLE Vector<DOUBLE,3>::Length(void) const
|
|
{
|
|
return (DOUBLE)sqrt( (DOUBLE)((*this)(1)*(*this)(1) + (*this)(2)*(*this)(2) + (*this)(3)*(*this)(3)));
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Type Vector<Type, iDimensions>::Length(void) const
|
|
{
|
|
Type result=(Type)0;
|
|
for(int i=1; i<=iDimensions; i++) {
|
|
result += (*this)(i) * (*this)(i);
|
|
}
|
|
return (Type)sqrt((DOUBLE)result);
|
|
}
|
|
|
|
/*
|
|
* Conversion into scalar -- Manhattan norm of vector.
|
|
*/
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Type Vector<Type, iDimensions>::ManhattanNorm(void) const
|
|
{
|
|
Type result=(Type)0;
|
|
for(int i=1; i<=iDimensions; i++) {
|
|
result += Abs((*this)(i));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Conversion into scalar -- Max norm of vector.
|
|
*/
|
|
template<class Type, int iDimensions>
|
|
__forceinline Type Vector<Type, iDimensions>::MaxNorm(void) const
|
|
{
|
|
Type result=(Type)0;
|
|
for(int i=1; i<=iDimensions; i++) {
|
|
result = Max(result, Abs((*this)(i)));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Reference vector member by it's index (1-based indices!).
|
|
*/
|
|
template<class Type, int iDimensions>
|
|
__forceinline Type &Vector<Type, iDimensions>::operator()(int i)
|
|
{
|
|
// check boundaries (indices start at 1, not at 0)
|
|
ASSERT(i>=1 && i<=iDimensions);
|
|
// return vector member reference
|
|
return vector[i-1];
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline const Type &Vector<Type, iDimensions>::operator()(int i) const
|
|
{
|
|
// check boundaries (indices start at 1, not at 0)
|
|
ASSERT(i>=1 && i<=iDimensions);
|
|
// return vector member reference
|
|
return vector[i-1];
|
|
}
|
|
|
|
/*
|
|
* Normalize vector, i.e. make it a unit vector.
|
|
*/
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> &Vector<Type, iDimensions>::Normalize(void)
|
|
{
|
|
// Normalizing a vector of a very small length can be very unprecise!
|
|
// ASSERT(((Type)*this) > 0.001);
|
|
*this/=Length();
|
|
return *this;
|
|
}
|
|
// gives vector with (0,0,0) orientation if input is too small
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> &Vector<Type, iDimensions>::SafeNormalize(void)
|
|
{
|
|
Type tLen = Length();
|
|
if (tLen<1E-6) {
|
|
if (iDimensions==2) {
|
|
*this = Vector(1,0);
|
|
} else {
|
|
*this = Vector(0,0,-1);
|
|
}
|
|
} else {
|
|
*this/=tLen;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
|
|
// unary minus FLOAT3D
|
|
template<> __forceinline Vector<FLOAT,3> &Vector<FLOAT,3>::Flip(void)
|
|
{
|
|
(*this)(1) = -(*this)(1);
|
|
(*this)(2) = -(*this)(2);
|
|
(*this)(3) = -(*this)(3);
|
|
return *this;
|
|
}
|
|
|
|
// unary minus DOUBLE3D
|
|
template<> __forceinline Vector<DOUBLE,3> &Vector<DOUBLE,3>::Flip(void)
|
|
{
|
|
(*this)(1) = -(*this)(1);
|
|
(*this)(2) = -(*this)(2);
|
|
(*this)(3) = -(*this)(3);
|
|
return *this;
|
|
}
|
|
|
|
// unary minus
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> &Vector<Type, iDimensions>::Flip(void)
|
|
{
|
|
// flip member by member
|
|
ASSERT( iDimensions!=3); // 3 is optimized special case
|
|
for(int iDimension=1; iDimension<=iDimensions; iDimension++) {
|
|
(*this)(iDimension) = -(*this)(iDimension);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> Vector<Type, iDimensions>::operator-(void) const
|
|
{
|
|
return Vector<Type, iDimensions>(*this).Flip();
|
|
}
|
|
|
|
|
|
// sum of two vectors FLOAT3D
|
|
template<> __forceinline Vector<FLOAT,3> &Vector<FLOAT,3>::operator+=(const Vector<FLOAT,3> &vector2)
|
|
{
|
|
// add member by member
|
|
(*this)(1) += vector2(1);
|
|
(*this)(2) += vector2(2);
|
|
(*this)(3) += vector2(3);
|
|
return *this;
|
|
}
|
|
|
|
// sum of two vectors DOUBLE3D
|
|
template<> __forceinline Vector<DOUBLE,3> &Vector<DOUBLE,3>::operator+=(const Vector<DOUBLE,3> &vector2)
|
|
{
|
|
// add member by member
|
|
(*this)(1) += vector2(1);
|
|
(*this)(2) += vector2(2);
|
|
(*this)(3) += vector2(3);
|
|
return *this;
|
|
}
|
|
|
|
// sum of two vectors
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> &Vector<Type, iDimensions>::operator+=(const Vector<Type, iDimensions> &vector2)
|
|
{
|
|
// add member by member
|
|
ASSERT( iDimensions!=3); // 3 is optimized special case
|
|
for(int iDimension=1; iDimension<=iDimensions; iDimension++) {
|
|
(*this)(iDimension) += vector2(iDimension);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> Vector<Type, iDimensions>::operator+(const Vector<Type, iDimensions> &vector2) const
|
|
{
|
|
return Vector<Type, iDimensions>(*this)+=vector2;
|
|
}
|
|
|
|
|
|
// difference of two vectors FLOAT3D
|
|
template<> __forceinline Vector<FLOAT,3> &Vector<FLOAT,3>::operator-=(const Vector<FLOAT,3> &vector2)
|
|
{
|
|
// add member by member
|
|
(*this)(1) -= vector2(1);
|
|
(*this)(2) -= vector2(2);
|
|
(*this)(3) -= vector2(3);
|
|
return *this;
|
|
}
|
|
|
|
// difference of two vectors DOUBLE3D
|
|
template<> __forceinline Vector<DOUBLE,3> &Vector<DOUBLE,3>::operator-=(const Vector<DOUBLE,3> &vector2)
|
|
{
|
|
// add member by member
|
|
(*this)(1) -= vector2(1);
|
|
(*this)(2) -= vector2(2);
|
|
(*this)(3) -= vector2(3);
|
|
return *this;
|
|
}
|
|
|
|
// difference of two vectors
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> &Vector<Type, iDimensions>::operator-=(const Vector<Type, iDimensions> &vector2)
|
|
{
|
|
// sub member by member
|
|
ASSERT( iDimensions!=3); // 3 is optimized special case
|
|
for(int iDimension=1; iDimension<=iDimensions; iDimension++) {
|
|
(*this)(iDimension) -= vector2(iDimension);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> Vector<Type, iDimensions>::operator-(const Vector<Type, iDimensions> &vector2) const
|
|
{
|
|
return Vector<Type, iDimensions>(*this)-=vector2;
|
|
}
|
|
|
|
|
|
|
|
// multiplication with scalar FLOAT3D
|
|
template<> __forceinline Vector<FLOAT,3> &Vector<FLOAT,3>::operator*=(const FLOAT scalar)
|
|
{
|
|
(*this)(1) *= scalar;
|
|
(*this)(2) *= scalar;
|
|
(*this)(3) *= scalar;
|
|
return *this;
|
|
}
|
|
|
|
// multiplication with scalar DOUBLE3D
|
|
template<> __forceinline Vector<DOUBLE,3> &Vector<DOUBLE,3>::operator*=(const DOUBLE scalar)
|
|
{
|
|
(*this)(1) *= scalar;
|
|
(*this)(2) *= scalar;
|
|
(*this)(3) *= scalar;
|
|
return *this;
|
|
}
|
|
|
|
// multiplication with scalar
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> &Vector<Type, iDimensions>::operator*=(const Type scalar)
|
|
{
|
|
ASSERT( iDimensions!=3); // 3 is optimized special case
|
|
for( int i=1; i<=iDimensions; i++) (*this)(i) *= scalar;
|
|
return *this;
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> Vector<Type, iDimensions>::operator*(const Type scalar) const
|
|
{
|
|
return Vector<Type, iDimensions>(*this) *= scalar;
|
|
}
|
|
|
|
|
|
// division with scalar FLOAT3D
|
|
template<> __forceinline Vector<FLOAT,3> &Vector<FLOAT,3>::operator/=(const FLOAT scalar)
|
|
{
|
|
const FLOAT rcp = 1.0f/scalar;
|
|
(*this)(1) *= rcp;
|
|
(*this)(2) *= rcp;
|
|
(*this)(3) *= rcp;
|
|
return *this;
|
|
}
|
|
|
|
// division with scalar DOUBLE3D
|
|
template<> __forceinline Vector<DOUBLE,3> &Vector<DOUBLE,3>::operator/=(const DOUBLE scalar)
|
|
{
|
|
const DOUBLE rcp = 1.0/scalar;
|
|
(*this)(1) *= rcp;
|
|
(*this)(2) *= rcp;
|
|
(*this)(3) *= rcp;
|
|
return *this;
|
|
}
|
|
|
|
|
|
// division with scalar
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> &Vector<Type, iDimensions>::operator/=(const Type scalar)
|
|
{
|
|
ASSERT( iDimensions!=3); // 3 is optimized special case
|
|
for( int i=1; i<=iDimensions; i++) (*this)(i) /= scalar;
|
|
return *this;
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> Vector<Type, iDimensions>::operator/(const Type scalar) const
|
|
{
|
|
return Vector<Type, iDimensions>(*this) /= scalar;
|
|
}
|
|
|
|
|
|
/*
|
|
* Multiplication of a vector by a square matrix.
|
|
*/
|
|
// NOTE: The matrix should have been on the left side of the vector, but the template syntax wouldn't allow that.
|
|
|
|
template<> __forceinline Vector<DOUBLE,3> Vector<DOUBLE,3>::operator*(const Matrix<DOUBLE,3,3> &matrix2) const
|
|
{
|
|
Vector<DOUBLE,3> result;
|
|
result(1) = matrix2(1,1) * (*this)(1) + matrix2(1,2) * (*this)(2) + matrix2(1,3) * (*this)(3);
|
|
result(2) = matrix2(2,1) * (*this)(1) + matrix2(2,2) * (*this)(2) + matrix2(2,3) * (*this)(3);
|
|
result(3) = matrix2(3,1) * (*this)(1) + matrix2(3,2) * (*this)(2) + matrix2(3,3) * (*this)(3);
|
|
return result;
|
|
}
|
|
|
|
template<> __forceinline Vector<FLOAT,3> Vector<FLOAT,3>::operator*(const Matrix<FLOAT,3,3> &matrix2) const
|
|
{
|
|
Vector<FLOAT,3> result;
|
|
result(1) = matrix2(1,1) * (*this)(1) + matrix2(1,2) * (*this)(2) + matrix2(1,3) * (*this)(3);
|
|
result(2) = matrix2(2,1) * (*this)(1) + matrix2(2,2) * (*this)(2) + matrix2(2,3) * (*this)(3);
|
|
result(3) = matrix2(3,1) * (*this)(1) + matrix2(3,2) * (*this)(2) + matrix2(3,3) * (*this)(3);
|
|
return result;
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> &Vector<Type, iDimensions>::operator*=(const Matrix<Type, iDimensions, iDimensions> &matrix2)
|
|
{
|
|
(*this) = (*this) * matrix2;
|
|
return *this;
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> Vector<Type, iDimensions>::operator*(const Matrix<Type, iDimensions, iDimensions> &matrix2) const
|
|
{
|
|
ASSERT( iDimensions!=3); // 3 is optimized special case
|
|
Vector<Type, iDimensions> result;
|
|
for(int iRow=1; iRow<=iDimensions; iRow++) {
|
|
result(iRow) = (Type)0;
|
|
for(int s=1; s<=iDimensions; s++) {
|
|
result(iRow) += matrix2(iRow, s) * (*this)(s);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
// scalar product - dot product, inner product for FLOAT3D
|
|
template<> __forceinline FLOAT Vector<FLOAT,3>::operator%(const Vector<FLOAT,3> &vector2) const
|
|
{
|
|
return (FLOAT)((*this)(1)*vector2(1) + (*this)(2)*vector2(2) + (*this)(3)*vector2(3));
|
|
}
|
|
|
|
// scalar product - dot product, inner product for DOUBLE3D
|
|
template<> __forceinline DOUBLE Vector<DOUBLE,3>::operator%(const Vector<DOUBLE,3> &vector2) const
|
|
{
|
|
return (DOUBLE)((*this)(1)*vector2(1) + (*this)(2)*vector2(2) + (*this)(3)*vector2(3));
|
|
}
|
|
|
|
// scalar product - dot product, inner product
|
|
template<class Type, int iDimensions>
|
|
__forceinline Type Vector<Type, iDimensions>::operator%(const Vector<Type, iDimensions> &vector2) const
|
|
{
|
|
ASSERT( iDimensions!=3); // 3 is optimized special case
|
|
Type result=(Type)0;
|
|
for(int i=1; i<=iDimensions; i++) {
|
|
result += (*this)(i) * vector2(i);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
// vector product - cross product, outer product
|
|
/* Formula: C=A*B
|
|
Cx = Ay*Bz - Az*By
|
|
Cy = Az*Bx - Ax*Bz
|
|
Cz = Ax*By - Ay*Bx
|
|
*/
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> &Vector<Type, iDimensions>::operator*=(const Vector<Type, iDimensions> &vector2)
|
|
{
|
|
(*this) = (*this) * vector2;
|
|
return *this;
|
|
}
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline Vector<Type, iDimensions> Vector<Type, iDimensions>::operator*(const Vector<Type, iDimensions> &vector2) const
|
|
{
|
|
Vector<Type, iDimensions> result;
|
|
ASSERT(iDimensions==3); // cross product is defined only for 3D vectors
|
|
result(1) = (*this)(2)*vector2(3) - (*this)(3)*vector2(2);
|
|
result(2) = (*this)(3)*vector2(1) - (*this)(1)*vector2(3);
|
|
result(3) = (*this)(1)*vector2(2) - (*this)(2)*vector2(1);
|
|
return result;
|
|
}
|
|
|
|
|
|
// comparation FLOAT3D
|
|
template<> __forceinline BOOL Vector<FLOAT,3>::operator==(const Vector<FLOAT,3> &vector2) const
|
|
{
|
|
return( (*this)(1)==vector2(1) && (*this)(2)==vector2(2) && (*this)(3)==vector2(3));
|
|
}
|
|
|
|
// comparation DOUBLE3D
|
|
template<> __forceinline BOOL Vector<DOUBLE,3>::operator==(const Vector<DOUBLE,3> &vector2) const
|
|
{
|
|
return( (*this)(1)==vector2(1) && (*this)(2)==vector2(2) && (*this)(3)==vector2(3));
|
|
}
|
|
|
|
// comparation
|
|
template<class Type, int iDimensions>
|
|
__forceinline BOOL Vector<Type, iDimensions>::operator==(const Vector<Type, iDimensions> &vector2) const
|
|
{
|
|
ASSERT( iDimensions!=3); // 3 is optimized special case
|
|
for(int i=1; i<=iDimensions; i++) {
|
|
if( (*this)(i) != vector2(i))
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
template<class Type, int iDimensions>
|
|
__forceinline BOOL Vector<Type, iDimensions>::operator!=(const Vector<Type, iDimensions> &vector2) const
|
|
{
|
|
return !(*this == vector2);
|
|
}
|
|
|
|
|
|
// helper functions for converting between FLOAT and DOUBLE vectors
|
|
__forceinline DOUBLE3D FLOATtoDOUBLE(const FLOAT3D &vf)
|
|
{
|
|
return DOUBLE3D(FLOATtoDOUBLE(vf(1)), FLOATtoDOUBLE(vf(2)), FLOATtoDOUBLE(vf(3)));
|
|
}
|
|
|
|
__forceinline FLOAT3D DOUBLEtoFLOAT(const DOUBLE3D &vd)
|
|
{
|
|
return FLOAT3D(DOUBLEtoFLOAT(vd(1)), DOUBLEtoFLOAT(vd(2)), DOUBLEtoFLOAT(vd(3)));
|
|
}
|
|
|
|
|
|
|
|
#endif /* include-once check. */
|
|
|