Serious-Engine/Sources/Engine/Terrain/TerrainRayCasting.cpp
2016-03-11 15:57:17 +02:00

535 lines
16 KiB
C++

/* Copyright (c) 2002-2012 Croteam Ltd. All rights reserved. */
#include "stdh.h"
#include <Engine/Terrain/Terrain.h>
#include <Engine/Math/Plane.h>
#include <Engine/Math/Clipping.inl>
#include <Engine/Math/Geometry.inl>
#include <Engine/Entities/Entity.h>
static CTerrain *_ptrTerrain = NULL;
static FLOAT3D _vOrigin; // Origin of ray
static FLOAT3D _vTarget; // Ray target
static FLOAT _fMinHeight; // Min height that ray will pass through in tested quad
static FLOAT _fMaxHeight; // Max height that ray will pass through in tested quad
static BOOL _bHitInvisibleTris; // Does ray hits invisible triangles
static FLOAT3D _vHitExact; // hit point
static FLOATplane3D _plHitPlane; // hit plane
// TEMP
static CStaticStackArray<GFXVertex> _avRCVertices;
static CStaticStackArray<INDEX> _aiRCIndices;
static FLOAT3D _vHitBegin;
static FLOAT3D _vHitEnd;
static FLOAT _fDistance;
// Test ray agains one quad on terrain (if it's visible)
static FLOAT HitCheckQuad(const PIX ix, const PIX iz)
{
FLOAT fDistance = UpperLimit(0.0f);
// if quad is outside terrain
if(ix<0 || iz<0 || ix>= (_ptrTerrain->tr_pixHeightMapWidth-1) || iz >= (_ptrTerrain->tr_pixHeightMapHeight-1)) {
return fDistance;
}
ASSERT(ix>=0 && iz>=0);
ASSERT(ix<(_ptrTerrain->tr_pixHeightMapWidth-1) && iz<(_ptrTerrain->tr_pixHeightMapHeight-1));
const PIX pixMapWidth = _ptrTerrain->tr_pixHeightMapWidth;
const INDEX ctVertices = _avRCVertices.Count(); // TEMP
UWORD *puwHeight = &_ptrTerrain->tr_auwHeightMap[ix + iz*pixMapWidth];
UBYTE *pubMask = &_ptrTerrain->tr_aubEdgeMap[ix + iz*pixMapWidth];
GFXVertex *pvx = _avRCVertices.Push(4);
GFXVertex *pavVertices = &_avRCVertices[0];
// Add four vertices
pvx[0].x = (ix+0) * _ptrTerrain->tr_vStretch(1);
pvx[0].y = puwHeight[0] * _ptrTerrain->tr_vStretch(2);
pvx[0].z = (iz+0) * _ptrTerrain->tr_vStretch(3);
pvx[0].shade = pubMask[0];
pvx[1].x = (ix+1) * _ptrTerrain->tr_vStretch(1);
pvx[1].y = puwHeight[1] * _ptrTerrain->tr_vStretch(2);
pvx[1].z = (iz+0) * _ptrTerrain->tr_vStretch(3);
pvx[1].shade = pubMask[1];
pvx[2].x = (ix+0) * _ptrTerrain->tr_vStretch(1);
pvx[2].y = puwHeight[pixMapWidth] * _ptrTerrain->tr_vStretch(2);
pvx[2].z = (iz+1) * _ptrTerrain->tr_vStretch(3);
pvx[2].shade = pubMask[pixMapWidth];
pvx[3].x = (ix+1) * _ptrTerrain->tr_vStretch(1);
pvx[3].y = puwHeight[pixMapWidth+1] * _ptrTerrain->tr_vStretch(2);
pvx[3].z = (iz+1) * _ptrTerrain->tr_vStretch(3);
pvx[3].shade = pubMask[pixMapWidth+1];
BOOL bFacing = (ix + iz*pixMapWidth)&1;
INDEX ctIndices=0;
// Add one quad
if(bFacing) {
// if at least one point of triangle is above min height and bellow max height of ray and traingle is visible
if((pvx[0].y>=_fMinHeight || pvx[2].y>=_fMinHeight || pvx[1].y>=_fMinHeight) &&
(pvx[0].y<=_fMaxHeight || pvx[2].y<=_fMinHeight || pvx[1].y<=_fMinHeight) &&
((pvx[0].shade + pvx[2].shade + pvx[1].shade == 255*3) | _bHitInvisibleTris)) {
// Add this triangle
INDEX *pind = _aiRCIndices.Push(3);
pind[0] = ctVertices+0;
pind[1] = ctVertices+2;
pind[2] = ctVertices+1;
ctIndices+=3;
}
// if at least one point of triangle is above min height and bellow max height of ray and traingle is visible
if((pvx[1].y>=_fMinHeight || pvx[2].y>=_fMinHeight || pvx[3].y>=_fMinHeight) &&
(pvx[1].y<=_fMaxHeight || pvx[2].y<=_fMaxHeight || pvx[3].y<=_fMaxHeight) &&
((pvx[1].shade + pvx[2].shade + pvx[3].shade == 255*3) | _bHitInvisibleTris)) {
// Add this triangle
INDEX *pind = _aiRCIndices.Push(3);
pind[0] = ctVertices+1;
pind[1] = ctVertices+2;
pind[2] = ctVertices+3;
ctIndices+=3;
}
} else {
// if at least one point of triangle is above min height and bellow max height of ray and traingle is visible
if((pvx[2].y>=_fMinHeight || pvx[3].y>=_fMinHeight || pvx[0].y>=_fMinHeight) &&
(pvx[2].y<=_fMaxHeight || pvx[3].y<=_fMaxHeight || pvx[0].y<=_fMaxHeight) &&
((pvx[2].shade + pvx[3].shade + pvx[0].shade == 255*3) | _bHitInvisibleTris)) {
// Add this triangle
INDEX *pind = _aiRCIndices.Push(3);
pind[0] = ctVertices+2;
pind[1] = ctVertices+3;
pind[2] = ctVertices+0;
ctIndices+=3;
}
// if at least one point of triangle is above min height and bellow max height of ray and traingle is visible
if((pvx[0].y>=_fMinHeight || pvx[3].y>=_fMinHeight || pvx[1].y>=_fMinHeight) &&
(pvx[0].y<=_fMaxHeight || pvx[3].y<=_fMaxHeight || pvx[1].y<=_fMaxHeight) &&
((pvx[0].shade + pvx[3].shade + pvx[1].shade == 255*3) | _bHitInvisibleTris)) {
// Add this triangle
INDEX *pind = _aiRCIndices.Push(3);
pind[0] = ctVertices+0;
pind[1] = ctVertices+3;
pind[2] = ctVertices+1;
ctIndices+=3;
}
}
if(ctIndices==0) {
return fDistance;
}
INDEX *paiIndices = &_aiRCIndices[_aiRCIndices.Count() - ctIndices];
// for each triangle
for(INDEX iTri=0;iTri<ctIndices;iTri+=3) {
INDEX *pind = &paiIndices[iTri];
GFXVertex &v0 = pavVertices[pind[0]];
GFXVertex &v1 = pavVertices[pind[1]];
GFXVertex &v2 = pavVertices[pind[2]];
FLOAT3D vx0(v0.x,v0.y,v0.z);
FLOAT3D vx1(v1.x,v1.y,v1.z);
FLOAT3D vx2(v2.x,v2.y,v2.z);
FLOATplane3D plTriPlane(vx0,vx1,vx2);
FLOAT fDistance0 = plTriPlane.PointDistance(_vOrigin);
FLOAT fDistance1 = plTriPlane.PointDistance(_vTarget);
// if the ray hits the polygon plane
if (fDistance0>=0 && fDistance0>=fDistance1) {
// calculate fraction of line before intersection
FLOAT fFraction = fDistance0/(fDistance0-fDistance1);
// calculate intersection coordinate
FLOAT3D vHitPoint = _vOrigin+(_vTarget-_vOrigin)*fFraction;
// calculate intersection distance
FLOAT fHitDistance = (vHitPoint-_vOrigin).Length();
// if the hit point can not be new closest candidate
if (fHitDistance>fDistance) {
// skip this triangle
continue;
}
// find major axes of the polygon plane
INDEX iMajorAxis1, iMajorAxis2;
GetMajorAxesForPlane(plTriPlane, iMajorAxis1, iMajorAxis2);
// create an intersector
CIntersector isIntersector(vHitPoint(iMajorAxis1), vHitPoint(iMajorAxis2));
// check intersections for all three edges of the polygon
isIntersector.AddEdge(
vx0(iMajorAxis1), vx0(iMajorAxis2),
vx1(iMajorAxis1), vx1(iMajorAxis2));
isIntersector.AddEdge(
vx1(iMajorAxis1), vx1(iMajorAxis2),
vx2(iMajorAxis1), vx2(iMajorAxis2));
isIntersector.AddEdge(
vx2(iMajorAxis1), vx2(iMajorAxis2),
vx0(iMajorAxis1), vx0(iMajorAxis2));
// if the polygon is intersected by the ray, and it is the closest intersection so far
if (isIntersector.IsIntersecting() && (fHitDistance < fDistance)) {
// remember hit coordinates
if(fHitDistance<fDistance) {
fDistance = fHitDistance;
_vHitExact = vHitPoint;
_plHitPlane = plTriPlane;
}
}
}
}
return fDistance;
}
#pragma message(">> Remove defined NUMDIM, RIGHT, LEFT ...")
#define NUMDIM 3
#define RIGHT 0
#define LEFT 1
#define MIDDLE 2
// Check if ray hits aabbox and return coords where ray enter and exit the box
static BOOL HitAABBox(const FLOAT3D &vOrigin, const FLOAT3D &vTarget, FLOAT3D &vHitBegin,
FLOAT3D &vHitEnd, const FLOATaabbox3D &bbox)
{
const FLOAT3D vDir = (vTarget - vOrigin).Normalize();
const FLOAT3D vMin = bbox.minvect;
const FLOAT3D vMax = bbox.maxvect;
FLOAT3D vBeginCandidatePlane;
FLOAT3D vEndCandidatePlane;
FLOAT3D vBeginTDistance;
FLOAT3D vEndTDistance;
INDEX iOriginSide[3];
BOOL bOriginInside = TRUE;
INDEX i;
// Find candidate planes
for(i=1;i<4;i++) {
// Check begining of ray
if(vOrigin(i) < vMin(i)) {
vBeginCandidatePlane(i) = vMin(i);
vEndCandidatePlane(i) = vMax(i);
bOriginInside = FALSE;
iOriginSide[i-1] = LEFT;
} else if(vOrigin(i) > vMax(i)) {
vBeginCandidatePlane(i) = vMax(i);
vEndCandidatePlane(i) = vMin(i);
bOriginInside = FALSE;
iOriginSide[i-1] = RIGHT;
} else {
iOriginSide[i-1] = MIDDLE;
if(vDir(i)>0.0f) {
vEndCandidatePlane(i) = vMax(i);
} else {
vEndCandidatePlane(i) = vMin(i);
}
}
}
// Calculate T distances to candidate planes
for(i=1;i<4;i++) {
if(iOriginSide[i-1]!=MIDDLE && vDir(i)!=0.0f) {
vBeginTDistance(i) = (vBeginCandidatePlane(i)-vOrigin(i)) / vDir(i);
} else {
vBeginTDistance(i) = -1.0f;
}
if(vDir(i)!=0.0f) {
vEndTDistance(i) = (vEndCandidatePlane(i)-vOrigin(i)) / vDir(i);
} else {
vEndTDistance(i) = -1.0f;
}
}
// Get largest of the T distances for final choice of intersection
INDEX iBeginMaxT = 1;
INDEX iEndMinT = 1;
for(i=2;i<4;i++) {
if(vBeginTDistance(i) > vBeginTDistance(iBeginMaxT)) {
iBeginMaxT = i;
}
if(vEndTDistance(i)>=0.0f && (vEndTDistance(iEndMinT)<0.0f || vEndTDistance(i) < vEndTDistance(iEndMinT)) ) {
iEndMinT = i;
}
}
// if origin inside box
if(bOriginInside) {
// Begining of ray is origin point
vHitBegin = vOrigin;
// else
} else {
// Check final candidate actually inside box
if(vBeginTDistance(iBeginMaxT)<0.0f) {
return FALSE;
}
if(vEndTDistance(iEndMinT)<0.0f) {
return FALSE;
}
// Calculate point where ray enter box
for(i=1;i<4;i++) {
if(iBeginMaxT != i) {
vHitBegin(i) = vOrigin(i) + vBeginTDistance(iBeginMaxT) * vDir(i);
if(vHitBegin(i) < vMin(i) || vHitBegin(i) > vMax(i)) {
return FALSE;
}
} else {
vHitBegin(i) = vBeginCandidatePlane(i);
}
}
}
// Caclulate point where ray exit box
for(i=1;i<4;i++) {
if(iEndMinT != i) {
vHitEnd(i) = vOrigin(i) + vEndTDistance(iEndMinT) * vDir(i);
if(vHitEnd(i) < vMin(i) || vHitEnd(i) > vMax(i)) {
// no ray exit point !?
ASSERT(FALSE);
}
} else {
vHitEnd(i) = vEndCandidatePlane(i);
}
}
return TRUE;
}
// Test all quads in ray direction and return exact hit location
static FLOAT GetExactHitLocation(CTerrain *ptrTerrain, const FLOAT3D &vHitBegin, const FLOAT3D &vHitEnd,
const FLOAT fOldDistance)
{
// set global vars
_ptrTerrain = ptrTerrain;
_vOrigin = vHitBegin;
_vTarget = vHitEnd;
// TEMP
_avRCVertices.PopAll();
_aiRCIndices.PopAll();
const FLOAT fX0 = vHitBegin(1) / ptrTerrain->tr_vStretch(1);
const FLOAT fY0 = vHitBegin(3) / ptrTerrain->tr_vStretch(3);
const FLOAT fH0 = vHitBegin(2);// / ptrTerrain->tr_vStretch(2);
const FLOAT fX1 = vHitEnd(1) / ptrTerrain->tr_vStretch(1);
const FLOAT fY1 = vHitEnd(3) / ptrTerrain->tr_vStretch(3);
const FLOAT fH1 = vHitEnd(2);// / ptrTerrain->tr_vStretch(2);
FLOAT fDeltaX = Abs(fX1-fX0);
FLOAT fDeltaY = Abs(fY1-fY0);
FLOAT fIterator;
if(fDeltaX>fDeltaY) {
fIterator = fDeltaX;
} else {
fIterator = fDeltaY;
}
if(fIterator==0) {
fIterator = 0.01f;
}
const FLOAT fStepX = (fX1-fX0) / fIterator;
const FLOAT fStepY = (fY1-fY0) / fIterator;
const FLOAT fStepH = (fH1-fH0) / fIterator;
const FLOAT fEpsilonH = Abs(fStepH);
FLOAT fX;
FLOAT fY;
FLOAT fH;
// calculate prestep
if(fDeltaX>fDeltaY) {
if(fX0<fX1) {
fX = ceil(fX0);
fY = fY0 + (fX-fX0)*fStepY;
fH = fH0 + (fX-fX0)*fStepH;
} else {
fX = floor(fX0);
fY = fY0 + (fX0-fX)*fStepY;
fH = fH0 + (fX0-fX)*fStepH;
}
} else {
if(fY0<fY1) {
fY = ceil(fY0);
fX = fX0 + (fY-fY0)*fStepX;
fH = fH0 + (fY-fY0)*fStepH;
} else {
fY = floor(fY0);
fX = fX0 + (fY0-fY)*fStepX;
fH = fH0 + (fY0-fY)*fStepH;
}
}
// Chech quad where ray starts
_fMinHeight = vHitBegin(2)-fEpsilonH;
_fMaxHeight = vHitBegin(2)+fEpsilonH;
FLOAT fDistanceStart = HitCheckQuad(floor(fX0),floor(fY0));
if(fDistanceStart<fOldDistance) {
return fDistanceStart;
}
// for each iteration
INDEX ctit = ceil(fIterator);
for(INDEX iit=0;iit<ctit;iit++) {
PIX pixX = floor(fX);
PIX pixY = floor(fY);
FLOAT fDistance0;
FLOAT fDistance1;
// Check first quad
_fMinHeight = fH-fEpsilonH;
_fMaxHeight = fH+fEpsilonH;
fDistance0 = HitCheckQuad(pixX,pixY);
// if iterating by x
if(fDeltaX>fDeltaY) {
// check left quad
fDistance1 = HitCheckQuad(pixX-1,pixY);
// else
} else {
// check upper quad
fDistance1 = HitCheckQuad(pixX,pixY-1);
}
// find closer of two quads
if(fDistance1<fDistance0) {
fDistance0 = fDistance1;
}
// if distance is closer than old distance
if(fDistance0<fOldDistance) {
// return distance
return fDistance0;
}
fX+=fStepX;
fY+=fStepY;
fH+=fStepH;
}
// Chech quad where ray ends
_fMinHeight = vHitEnd(2)-fEpsilonH;
_fMaxHeight = vHitEnd(2)+fEpsilonH;
FLOAT fDistanceEnd = HitCheckQuad(floor(fX1),floor(fY1));
if(fDistanceEnd<fOldDistance) {
return fDistanceEnd;
}
// no hit
return UpperLimit(0.0f);
}
// Test a ray agains given terrain
FLOAT TestRayCastHit(CTerrain *ptrTerrain, const FLOATmatrix3D &mRotation, const FLOAT3D &vPosition,
const FLOAT3D &vOrigin, const FLOAT3D &vTarget,const FLOAT fOldDistance, const BOOL bHitInvisibleTris)
{
_vHitBegin = FLOAT3D(0,0,0);
_vHitEnd = FLOAT3D(0,0,0);
_vHitExact = FLOAT3D(0,0,0);
_bHitInvisibleTris = bHitInvisibleTris;
FLOATaabbox3D bboxAll;
FLOATmatrix3D mInvertRot = !mRotation;
FLOAT3D vStart = (vOrigin-vPosition) * mInvertRot;
FLOAT3D vEnd = (vTarget-vPosition) * mInvertRot;
FLOAT3D vHitBegin;
FLOAT3D vHitEnd;
FLOAT fDistance = UpperLimit(0.0f);
ptrTerrain->GetAllTerrainBBox(bboxAll);
extern INDEX ter_bTempFreezeCast;
static FLOAT3D _vFrozenStart;
static FLOAT3D _vFrozenEnd;
if(ter_bTempFreezeCast) {
vStart = _vFrozenStart;
vEnd = _vFrozenEnd;
} else {
_vFrozenStart = vStart;
_vFrozenEnd = vEnd;
}
// if ray hits terrain box
if(HitAABBox(vStart,vEnd,vHitBegin,vHitEnd,bboxAll)) {
// if begin and end are at same pos
if(vHitBegin==vHitEnd) {
// move end hit
vHitBegin(2)+=0.1f;
vHitEnd(2)-=0.1f;
}
_vHitBegin = vHitBegin;
_vHitEnd = vHitEnd;
// find exact hit location on terrain
fDistance = GetExactHitLocation(ptrTerrain,vHitBegin,vHitEnd,fOldDistance);
fDistance += (vStart-vHitBegin).Length();
}
_fDistance = fDistance;
return fDistance;
}
FLOAT TestRayCastHit(CTerrain *ptrTerrain, const FLOATmatrix3D &mRotation, const FLOAT3D &vPosition,
const FLOAT3D &vOrigin, const FLOAT3D &vTarget,const FLOAT fOldDistance,
const BOOL bHitInvisibleTris, FLOATplane3D &plHitPlane, FLOAT3D &vHitPoint)
{
ASSERT(ptrTerrain!=NULL);
ASSERT(ptrTerrain->tr_penEntity!=NULL);
CEntity *pen = ptrTerrain->tr_penEntity;
// casting ray
FLOAT fDistance = TestRayCastHit(ptrTerrain, mRotation, vPosition, vOrigin, vTarget, fOldDistance, bHitInvisibleTris);
// convert hit point to absulute point
vHitPoint = (_vHitExact * pen->en_mRotation) + pen->en_plPlacement.pl_PositionVector;
plHitPlane = _plHitPlane;
return fDistance;
}
#include <Engine/Graphics/Drawport.h>
#include <Engine/Graphics/Font.h>
void ShowRayPath(CDrawPort *pdp)
{
return;
INDEX ctVertices = _avRCVertices.Count();
INDEX ctIndices = _aiRCIndices.Count();
if(ctVertices>0 && ctIndices>0) {
gfxDisableTexture();
gfxDisableBlend();
gfxEnableDepthBias();
gfxPolygonMode(GFX_LINE);
gfxSetVertexArray(&_avRCVertices[0],_avRCVertices.Count());
gfxSetConstantColor(0xFFFFFFFF);
gfxDrawElements(_aiRCIndices.Count(),&_aiRCIndices[0]);
gfxDisableDepthBias();
gfxPolygonMode(GFX_FILL);
}
gfxEnableDepthBias();
gfxDisableDepthTest();
pdp->DrawPoint3D(_vHitBegin,0x00FF00FF,8);
pdp->DrawPoint3D(_vHitEnd,0xFF0000FF,8);
pdp->DrawPoint3D(_vHitExact,0x00FFFF,8);
pdp->DrawLine3D(_vHitBegin,_vHitEnd,0xFFFF00FF);
pdp->DrawLine3D(FLOAT3D(_vHitBegin(1),_vHitEnd(2),_vHitBegin(3)),_vHitEnd,0xFF0000FF);
gfxEnableDepthTest();
gfxDisableDepthBias();
/*
extern void gfxDrawWireBox(FLOATaabbox3D &bbox, COLOR col);
if(_ptrTerrain!=NULL) {
FLOATaabbox3D bboxAll;
_ptrTerrain->GetAllTerrainBBox(bboxAll);
gfxDrawWireBox(bboxAll,0xFFFF00FF);
}
pdp->SetFont( _pfdConsoleFont);
pdp->SetTextAspect( 1.0f);
pdp->SetOrtho();
pdp->PutText(CTString(0,"%g",_fDistance),0,0,0xFFFFFFFF);
*/
}