Serious-Engine/Sources/Engine/Math/OBBox.h
Ryan C. Gordon 1a2ccb8f50 Merge github.com:Croteam-Official/Serious-Engine
Conflicts:
	Sources/Ecc/Parser.cpp
	Sources/Ecc/Scanner.cpp
	Sources/Engine/Base/Scanner.cpp
	Sources/Engine/GameAgent/GameAgent.cpp
	Sources/Engine/Graphics/Gfx_wrapper.h
	Sources/Engine/Network/Network.cpp
	Sources/Engine/Sound/SoundDecoder.h
	Sources/Engine/Templates/HashTableTemplate.cpp
	Sources/Engine/Terrain/Terrain.h
	Sources/EntitiesMP/ParticleCloudsHolder.es
	Sources/EntitiesMP/ParticleCloudsMarker.es
	Sources/SeriousSam/CDCheck.h
	Sources/SeriousSam/Menu.cpp
	Sources/SeriousSam/MenuGadgets.cpp
	Sources/SeriousSam/SeriousSam.cpp
	Sources/SeriousSam/SplashScreen.cpp
	Sources/SeriousSam/StdH.cpp
	Sources/SeriousSam/StdH.h
	Sources/Shaders/StdH.cpp
2016-04-02 23:56:12 -04:00

286 lines
9.5 KiB
C++

/* Copyright (c) 2002-2012 Croteam Ltd.
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as published by
the Free Software Foundation
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
#ifndef SE_INCL_OBBOX_H
#define SE_INCL_OBBOX_H
#ifdef PRAGMA_ONCE
#pragma once
#endif
#include <Engine/Math/Vector.h>
#include <Engine/Math/Matrix.h>
#include <Engine/Math/Functions.h>
#include <Engine/Math/Plane.h>
/*
* Template for oriented bounding box of arbitrary type in 3D
*/
template<class Type>
class OBBox {
// implementation:
public:
Vector<Type, 3> box_vO; // center of the box
Vector<Type, 3> box_avAxis[3]; // axis direction vectors
Type box_atSize[3]; // size on each of the axis (in both directions)
/* Clear to normalized empty bounding box. */
inline void SetToNormalizedEmpty(void);
// interface:
public:
/* Default constructor. */
inline OBBox(void);
/* Constructor from components. */
inline OBBox(const Vector<Type, 3> &vO,
const Vector<Type, 3> &vAxis0, const Vector<Type, 3> &vAxis1, const Vector<Type, 3> &vAxis2,
Type tSize0, Type tSize1, Type tSize2);
/* Constructor from axis aligned box and placement. */
inline OBBox(const AABBox<Type, 3> &aabbox,
const Vector<Type, 3> &vPos, const Matrix<Type, 3, 3> &mRot);
/* Constructor from axis aligned box without placement. */
inline OBBox(const AABBox<Type, 3> &aabbox);
// classify box with respect to a plane
inline Type TestAgainstPlane(const Plane<Type, 3> &pl) const;
// check if two boxes intersect/touch
inline BOOL HasContactWith(const OBBox<Type> &boxB) const;
/* Check if empty. */
inline BOOL IsEmpty(void) const;
};
/*
* Clear to normalized empty bounding box.
*/
template<class Type>
inline void OBBox<Type>::SetToNormalizedEmpty(void) {
for ( int i=0; i<3; i++ ) {
box_atSize[i] = LowerLimit(Type(0));
}
}
/*
* Constructor for empty bounding box.
*/
template<class Type>
inline OBBox<Type>::OBBox() {
SetToNormalizedEmpty();
}
/* Constructor from axis aligned box and placement. */
template<class Type>
inline OBBox<Type>::OBBox(const AABBox<Type, 3> &aabbox,
const Vector<Type, 3> &vPos, const Matrix<Type, 3, 3> &mRot)
{
// translate and rotate the center
box_vO = aabbox.Center()*mRot+vPos;
// extracted orientation from the rotation matrix
box_avAxis[0](1) = mRot(1,1); box_avAxis[0](2) = mRot(2,1); box_avAxis[0](3) = mRot(3,1);
box_avAxis[1](1) = mRot(1,2); box_avAxis[1](2) = mRot(2,2); box_avAxis[1](3) = mRot(3,2);
box_avAxis[2](1) = mRot(1,3); box_avAxis[2](2) = mRot(2,3); box_avAxis[2](3) = mRot(3,3);
// get sizes from obbox sizes
box_atSize[0] = aabbox.Size()(1)*0.5f;
box_atSize[1] = aabbox.Size()(2)*0.5f;
box_atSize[2] = aabbox.Size()(3)*0.5f;
}
/* Constructor from axis aligned box without placement. */
template<class Type>
inline OBBox<Type>::OBBox(const AABBox<Type, 3> &aabbox)
{
box_vO = aabbox.Center();
box_avAxis[0] = Vector<Type, 3>(1,0,0);
box_avAxis[1] = Vector<Type, 3>(0,1,0);
box_avAxis[2] = Vector<Type, 3>(0,0,1);
box_atSize[0] = aabbox.Size()(1)*0.5f;
box_atSize[1] = aabbox.Size()(2)*0.5f;
box_atSize[2] = aabbox.Size()(3)*0.5f;
}
/* Constructor from components. */
template<class Type>
inline OBBox<Type>::OBBox(const Vector<Type, 3> &vO,
const Vector<Type, 3> &vAxis0, const Vector<Type, 3> &vAxis1, const Vector<Type, 3> &vAxis2,
Type tSize0, Type tSize1, Type tSize2) {
box_vO = vO;
box_avAxis[0] = vAxis0; box_avAxis[1] = vAxis1; box_avAxis[2] = vAxis2;
box_atSize[0] = tSize0; box_atSize[1] = tSize1; box_atSize[2] = tSize2;
};
/*
* Check if empty.
*/
template<class Type>
inline BOOL OBBox<Type>::IsEmpty(void) const {
// if any dimension is empty, it is empty
for ( int i=0; i<3; i++ ) {
if (box_atSize[i] < Type(0)) {
return TRUE;
}
}
// otherwise, it is not empty
return FALSE;
}
// classify a box with respect to a plane
template<class Type>
inline Type OBBox<Type>::TestAgainstPlane(const Plane<Type, 3> &pl) const
{
// project each axis to the plane normal
Type tNX = ((const Vector<Type,3> &)pl)%box_avAxis[0];
Type tNY = ((const Vector<Type,3> &)pl)%box_avAxis[1];
Type tNZ = ((const Vector<Type,3> &)pl)%box_avAxis[2];
// calculate overall size of the box along the plane normal
Type tSize = Abs(tNX*box_atSize[0]) + Abs(tNY*box_atSize[1]) + Abs(tNZ*box_atSize[2]);
// get distance of the center from the plane
Type tCenterD = pl.PointDistance(box_vO);
// if the center is further front than box's size
if (tCenterD>tSize) {
// completely in front `
return Type(1);
// if the center is further back than box's size
} else if (tCenterD<-tSize) {
// completely back
return Type(-1);
// otherwise, it touches the plane
} else {
return Type(0);
}
}
// check if two boxes intersect/touch
// using the separating axes theorem
template<class Type>
inline BOOL OBBox<Type>::HasContactWith(const OBBox<Type> &boxB) const
{
const OBBox<Type> &boxA = *this;
// find offset in abs space
Vector<Type, 3> vOffAbs = boxB.box_vO - boxA.box_vO;
// rotate offset to A space
Type vOffA[3] = {
vOffAbs%boxA.box_avAxis[0],
vOffAbs%boxA.box_avAxis[1],
vOffAbs%boxA.box_avAxis[2]};
// calculate rotation matrix from B to A
Type mR[3][3];
{for(INDEX i=0; i<3; i++) {
{for(INDEX j=0; j<3; j++) {
mR[i][j] = boxA.box_avAxis[i]%boxB.box_avAxis[j];
}}
}}
Type tRa, tRb, tT;
// check each axis of A
{for(INDEX i=0; i<3; i++ ) {
tRa = boxA.box_atSize[i];
tRb = boxB.box_atSize[0]*Abs(mR[i][0]) + boxB.box_atSize[1]*Abs(mR[i][1]) + boxB.box_atSize[2]*Abs(mR[i][2]);
tT = Abs( vOffA[i] );
if (tT>tRa+tRb) return FALSE;
}}
// check each axis of B
{for(INDEX i=0; i<3; i++ ) {
tRa = boxA.box_atSize[0]*Abs(mR[0][i]) + boxA.box_atSize[1]*Abs(mR[1][i]) + boxA.box_atSize[2]*Abs(mR[2][i]);
tRb = boxB.box_atSize[i];
tT = Abs( vOffA[0]*mR[0][i] + vOffA[1]*mR[1][i] + vOffA[2]*mR[2][i] );
if (tT>tRa+tRb) return FALSE;
}}
// check A0 x B0
tRa = boxA.box_atSize[1]*Abs(mR[2][0]) + boxA.box_atSize[2]*Abs(mR[1][0]);
tRb = boxB.box_atSize[1]*Abs(mR[0][2]) + boxB.box_atSize[2]*Abs(mR[0][1]);
tT = Abs( vOffA[2]*mR[1][0] - vOffA[1]*mR[2][0] );
if(tT>tRa+tRb) return FALSE;
// check A0 x B1
tRa = boxA.box_atSize[1]*Abs(mR[2][1]) + boxA.box_atSize[2]*Abs(mR[1][1]);
tRb = boxB.box_atSize[0]*Abs(mR[0][2]) + boxB.box_atSize[2]*Abs(mR[0][0]);
tT = Abs( vOffA[2]*mR[1][1] - vOffA[1]*mR[2][1] );
if(tT>tRa+tRb) return FALSE;
// check A0 x B2
tRa = boxA.box_atSize[1]*Abs(mR[2][2]) + boxA.box_atSize[2]*Abs(mR[1][2]);
tRb = boxB.box_atSize[0]*Abs(mR[0][1]) + boxB.box_atSize[1]*Abs(mR[0][0]);
tT = Abs( vOffA[2]*mR[1][2] - vOffA[1]*mR[2][2] );
if(tT>tRa+tRb) return FALSE;
// check A1 x B0
tRa = boxA.box_atSize[0]*Abs(mR[2][0]) + boxA.box_atSize[2]*Abs(mR[0][0]);
tRb = boxB.box_atSize[1]*Abs(mR[1][2]) + boxB.box_atSize[2]*Abs(mR[1][1]);
tT = Abs( vOffA[0]*mR[2][0] - vOffA[2]*mR[0][0] );
if(tT>tRa+tRb) return FALSE;
// check A1 x B1
tRa = boxA.box_atSize[0]*Abs(mR[2][1]) + boxA.box_atSize[2]*Abs(mR[0][1]);
tRb = boxB.box_atSize[0]*Abs(mR[1][2]) + boxB.box_atSize[2]*Abs(mR[1][0]);
tT = Abs( vOffA[0]*mR[2][1] - vOffA[2]*mR[0][1] );
if(tT>tRa+tRb) return FALSE;
// check A1 x B2
tRa = boxA.box_atSize[0]*Abs(mR[2][2]) + boxA.box_atSize[2]*Abs(mR[0][2]);
tRb = boxB.box_atSize[0]*Abs(mR[1][1]) + boxB.box_atSize[1]*Abs(mR[1][0]);
tT = Abs( vOffA[0]*mR[2][2] - vOffA[2]*mR[0][2] );
if(tT>tRa+tRb) return FALSE;
// check A2 x B0
tRa = boxA.box_atSize[0]*Abs(mR[1][0]) + boxA.box_atSize[1]*Abs(mR[0][0]);
tRb = boxB.box_atSize[1]*Abs(mR[2][2]) + boxB.box_atSize[2]*Abs(mR[2][1]);
tT = Abs( vOffA[1]*mR[0][0] - vOffA[0]*mR[1][0] );
if(tT>tRa+tRb) return FALSE;
// check A2 x B1
tRa = boxA.box_atSize[0]*Abs(mR[1][1]) + boxA.box_atSize[1]*Abs(mR[0][1]);
tRb = boxB.box_atSize[0] *Abs(mR[2][2]) + boxB.box_atSize[2]*Abs(mR[2][0]);
tT = Abs( vOffA[1]*mR[0][1] - vOffA[0]*mR[1][1] );
if(tT>tRa+tRb) return FALSE;
// check A2 x B2
tRa = boxA.box_atSize[0]*Abs(mR[1][2]) + boxA.box_atSize[1]*Abs(mR[0][2]);
tRb = boxB.box_atSize[0]*Abs(mR[2][1]) + boxB.box_atSize[1]*Abs(mR[2][0]);
tT = Abs( vOffA[1]*mR[0][2] - vOffA[0]*mR[1][2] );
if(tT>tRa+tRb) return FALSE;
return TRUE;
}
// helper functions for converting between FLOAT and DOUBLE obboxes
inline DOUBLEobbox3D FLOATtoDOUBLE(const FLOATobbox3D &boxf) {
return DOUBLEobbox3D(
FLOATtoDOUBLE(boxf.box_vO),
FLOATtoDOUBLE(boxf.box_avAxis[0]),
FLOATtoDOUBLE(boxf.box_avAxis[1]),
FLOATtoDOUBLE(boxf.box_avAxis[2]),
FLOATtoDOUBLE(boxf.box_atSize[0]),
FLOATtoDOUBLE(boxf.box_atSize[1]),
FLOATtoDOUBLE(boxf.box_atSize[2]));
}
inline FLOATobbox3D DOUBLEtoFLOAT(const DOUBLEobbox3D &boxd) {
return FLOATobbox3D(
DOUBLEtoFLOAT(boxd.box_vO),
DOUBLEtoFLOAT(boxd.box_avAxis[0]),
DOUBLEtoFLOAT(boxd.box_avAxis[1]),
DOUBLEtoFLOAT(boxd.box_avAxis[2]),
DOUBLEtoFLOAT(boxd.box_atSize[0]),
DOUBLEtoFLOAT(boxd.box_atSize[1]),
DOUBLEtoFLOAT(boxd.box_atSize[2]));
}
#endif /* include-once check. */