Serious-Engine/Sources/Engine/Base/Win32/Win32Synchronization.cpp
Ryan C. Gordon 24cb244d43 First attempt to hand-merge Ryan's Linux and Mac OS X port.
This was a _ton_ of changes, made 15 years ago, so there are probably some
problems to work out still.

Among others: Engine/Base/Stream.* was mostly abandoned and will need to be
re-ported.

Still, this is a pretty good start, and probably holds a world record for
lines of changes or something.  :)
2016-03-28 23:46:13 -04:00

307 lines
7.6 KiB
C++

/* Copyright (c) 2002-2012 Croteam Ltd. All rights reserved. */
#include "Engine/StdH.h"
#include <Engine/Base/Synchronization.h>
/*
This is implementation of OPTEX (optimized mutex),
originally from MSDN Periodicals 1996, by Jeffrey Richter.
It is updated for clearer comments, shielded with tons of asserts,
and modified to support TryToEnter() function. The original version
had timeout parameter, bu it didn't work.
NOTES:
- TryToEnter() was not tested with more than one thread, and perhaps
there might be some problems with the final decrementing and eventual event resetting
when lock fails. Dunno.
- take care to center the lock tests around 0 (-1 means not locked). that is
neccessary because win95 returns only <0, ==0 and >0 results from interlocked
functions, so testing against any other number than 0 doesn't work.
*/
// The opaque OPTEX data structure
typedef struct {
LONG lLockCount; // note: must center all tests around 0 for win95 compatibility!
DWORD dwThreadId;
LONG lRecurseCount;
HANDLE hEvent;
} OPTEX, *POPTEX;
_declspec(thread) INDEX _iLastLockedMutex = 0;
BOOL OPTEX_Initialize (POPTEX poptex) {
poptex->lLockCount = -1; // No threads have enterred the OPTEX
poptex->dwThreadId = 0; // The OPTEX is unowned
poptex->lRecurseCount = 0; // The OPTEX is unowned
poptex->hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
return(poptex->hEvent != NULL); // TRUE if the event is created
}
VOID OPTEX_Delete (POPTEX poptex) {
// No in-use check
CloseHandle(poptex->hEvent); // Close the event
}
INDEX OPTEX_Enter (POPTEX poptex)
{
DWORD dwThreadId = GetCurrentThreadId(); // The calling thread's ID
// increment lock counter
INDEX ctLocked = InterlockedIncrement(&poptex->lLockCount);
ASSERT(poptex->lLockCount>=0);
// if this is first thread that entered
if (ctLocked == 0) {
// mark that we own it, exactly once
ASSERT(poptex->dwThreadId==0);
ASSERT(poptex->lRecurseCount==0);
poptex->dwThreadId = dwThreadId;
poptex->lRecurseCount = 1;
// if already owned
} else {
// if owned by this thread
if (poptex->dwThreadId == dwThreadId) {
// just mark that we own it once more
poptex->lRecurseCount++;
ASSERT(poptex->lRecurseCount>1);
// if owned by some other thread
} else {
// wait for the owning thread to release the OPTEX
DWORD dwRet = WaitForSingleObject(poptex->hEvent, INFINITE);
ASSERT(dwRet == WAIT_OBJECT_0);
// mark that we own it, exactly once
ASSERT(poptex->dwThreadId==0);
ASSERT(poptex->lRecurseCount==0);
poptex->dwThreadId = dwThreadId;
poptex->lRecurseCount = 1;
}
}
ASSERT(poptex->lRecurseCount>=1);
ASSERT(poptex->lLockCount>=0);
return poptex->lRecurseCount;
}
INDEX OPTEX_TryToEnter (POPTEX poptex)
{
ASSERT(poptex->lLockCount>=-1);
DWORD dwThreadId = GetCurrentThreadId(); // The calling thread's ID
// increment lock counter
INDEX ctLocked = InterlockedIncrement(&poptex->lLockCount);
ASSERT(poptex->lLockCount>=0);
// if this is first thread that entered
if (ctLocked == 0) {
// mark that we own it, exactly once
ASSERT(poptex->dwThreadId==0);
ASSERT(poptex->lRecurseCount==0);
poptex->dwThreadId = dwThreadId;
poptex->lRecurseCount = 1;
// lock succeeded
return poptex->lRecurseCount;
// if already owned
} else {
// if owned by this thread
if (poptex->dwThreadId == dwThreadId) {
// just mark that we own it once more
poptex->lRecurseCount++;
ASSERT(poptex->lRecurseCount>=1);
// lock succeeded
return poptex->lRecurseCount;
// if owned by some other thread
} else {
// give up taking it
INDEX ctLocked = InterlockedDecrement(&poptex->lLockCount);
ASSERT(poptex->lLockCount>=-1);
// if unlocked in the mean time
if (ctLocked<0) {
// NOTE: this has not been tested!
// ignore sent the signal
ResetEvent(poptex->hEvent);
}
// lock failed
return 0;
}
}
}
INDEX OPTEX_Leave (POPTEX poptex)
{
ASSERT(poptex->dwThreadId==GetCurrentThreadId());
// we own in one time less
poptex->lRecurseCount--;
ASSERT(poptex->lRecurseCount>=0);
INDEX ctResult = poptex->lRecurseCount;
// if more multiple locks from this thread
if (poptex->lRecurseCount > 0) {
// just decrement the lock count
InterlockedDecrement(&poptex->lLockCount);
ASSERT(poptex->lLockCount>=-1);
// if no more multiple locks from this thread
} else {
// mark that this thread doesn't own it
poptex->dwThreadId = 0;
// decrement the lock count
INDEX ctLocked = InterlockedDecrement(&poptex->lLockCount);
ASSERT(poptex->lLockCount>=-1);
// if some threads are waiting for it
if ( ctLocked >= 0) {
// wake one of them
SetEvent(poptex->hEvent);
}
}
ASSERT(poptex->lRecurseCount>=0);
ASSERT(poptex->lLockCount>=-1);
return ctResult;
}
// these are just wrapper classes for locking/unlocking
CTCriticalSection::CTCriticalSection(void)
{
// index must be set before using the mutex
cs_iIndex = -2;
cs_pvObject = new OPTEX;
OPTEX_Initialize((OPTEX*)cs_pvObject);
}
CTCriticalSection::~CTCriticalSection(void)
{
OPTEX_Delete((OPTEX*)cs_pvObject);
delete (OPTEX*)cs_pvObject;
}
INDEX CTCriticalSection::Lock(void)
{
return OPTEX_Enter((OPTEX*)cs_pvObject);
}
INDEX CTCriticalSection::TryToLock(void)
{
return OPTEX_TryToEnter((OPTEX*)cs_pvObject);
}
INDEX CTCriticalSection::Unlock(void)
{
return OPTEX_Leave((OPTEX*)cs_pvObject);
}
CTSingleLock::CTSingleLock(CTCriticalSection *pcs, BOOL bLock) : sl_cs(*pcs)
{
// initially not locked
sl_bLocked = FALSE;
sl_iLastLockedIndex = -2;
// critical section must have index assigned
ASSERT(sl_cs.cs_iIndex>=1||sl_cs.cs_iIndex==-1);
// if should lock immediately
if (bLock) {
Lock();
}
}
CTSingleLock::~CTSingleLock(void)
{
// if locked
if (sl_bLocked) {
// unlock
Unlock();
}
}
void CTSingleLock::Lock(void)
{
// must not be locked
ASSERT(!sl_bLocked);
ASSERT(sl_iLastLockedIndex==-2);
// if not locked
if (!sl_bLocked) {
// lock
INDEX ctLocks = sl_cs.Lock();
// if this mutex was not locked already
if (ctLocks==1) {
// check that locking in given order
if (sl_cs.cs_iIndex!=-1) {
ASSERT(_iLastLockedMutex<sl_cs.cs_iIndex);
sl_iLastLockedIndex = _iLastLockedMutex;
_iLastLockedMutex = sl_cs.cs_iIndex;
}
}
}
sl_bLocked = TRUE;
}
BOOL CTSingleLock::TryToLock(void)
{
// must not be locked
ASSERT(!sl_bLocked);
// if not locked
if (!sl_bLocked) {
// if can lock
INDEX ctLocks = sl_cs.TryToLock();
if (ctLocks>=1) {
sl_bLocked = TRUE;
// if this mutex was not locked already
if (ctLocks==1) {
// check that locking in given order
if (sl_cs.cs_iIndex!=-1) {
ASSERT(_iLastLockedMutex<sl_cs.cs_iIndex);
sl_iLastLockedIndex = _iLastLockedMutex;
_iLastLockedMutex = sl_cs.cs_iIndex;
}
}
}
}
return sl_bLocked;
}
BOOL CTSingleLock::IsLocked(void)
{
return sl_bLocked;
}
void CTSingleLock::Unlock(void)
{
// must be locked
ASSERT(sl_bLocked);
// if locked
if (sl_bLocked) {
// unlock
INDEX ctLocks = sl_cs.Unlock();
// if unlocked completely
if (ctLocks==0) {
// check that unlocking in exact reverse order
if (sl_cs.cs_iIndex!=-1) {
ASSERT(_iLastLockedMutex==sl_cs.cs_iIndex);
_iLastLockedMutex = sl_iLastLockedIndex;
sl_iLastLockedIndex = -2;
}
}
}
sl_bLocked = FALSE;
}