/* Copyright (c) 2002-2012 Croteam Ltd. All rights reserved. */ #include "Engine/StdH.h" #include #include #include #include //rcg10242001 #include #include #include #include #include #include //#if ( (USE_PORTABLE_C) || (PLATFORM_UNIX) ) //#define USE_GETTIMEOFDAY 1 //#endif #if USE_GETTIMEOFDAY #include #endif // Read the Pentium TimeStampCounter (or something like that). static inline __int64 ReadTSC(void) { #if USE_GETTIMEOFDAY struct timeval tv; gettimeofday(&tv, NULL); return( (((__int64) tv.tv_sec) * 1000000) + ((__int64) tv.tv_usec) ); #elif (defined __MSVC_INLINE__) __int64 mmRet; __asm { rdtsc mov dword ptr [mmRet+0],eax mov dword ptr [mmRet+4],edx } return mmRet; #elif (defined __GNU_INLINE__) __int64 mmRet; __asm__ __volatile__ ( "rdtsc \n\t" "movl %%eax, 0(%%esi) \n\t" "movl %%edx, 4(%%esi) \n\t" : : "S" (&mmRet) : "memory", "eax", "edx" ); return(mmRet); #else #error Please implement for your platform/compiler. #endif } // link with Win-MultiMedia #ifdef _MSC_VER #pragma comment(lib, "winmm.lib") #endif // current game time always valid for the currently active task THREADLOCAL(TIME, _CurrentTickTimer, 0.0f); // CTimer implementation // pointer to global timer object CTimer *_pTimer = NULL; const TIME CTimer::TickQuantum = TIME(1/20.0); // 20 ticks per second /* * Timer interrupt callback function. */ /* NOTE: This function is a bit more complicated than it could be, because it has to deal with a feature in the windows multimedia timer that is undesired here. That is the fact that, if the timer function is stalled for a while, because some other thread or itself took too much time, the timer function is called more times to catch up with the hardware clock. This can cause complete lockout if timer handlers constantly consume more time than is available between two calls of timer function. As a workaround, this function measures hardware time and refuses to call the handlers if it is not on time. In effect, if some timer handler starts spending too much time, the handlers are called at lower frequency until the application (hopefully) stabilizes. When such a catch-up situation occurs, 'real time' timer still keeps more or less up to date with the hardware time, but the timer handlers skip some ticks. E.g. if timer handlers start spending twice more time than is tick quantum, they get called approx. every two ticks. EXTRA NOTE: Had to disable that, because it didn't work well (caused jerking) on Win95 osr2 with no patches installed! */ void CTimer_TimerFunc_internal(void) { // Access to stream operations might be invoked in timer handlers, but // this is disabled for now. Should also synchronize access to list of // streams and to group file before enabling that! // CTSTREAM_BEGIN { #ifdef SINGLE_THREADED // rcg10272001 experimenting here... static CTimerValue highResQuantum((double) _pTimer->TickQuantum); CTimerValue upkeep = _pTimer->GetHighPrecisionTimer() - _pTimer->tm_InitialTimerUpkeep; TIME t = upkeep.GetSeconds(); if (t < _pTimer->TickQuantum) // not time to do an update, yet. return; while (t >= _pTimer->TickQuantum) { _pTimer->tm_InitialTimerUpkeep += highResQuantum; _pTimer->tm_RealTimeTimer += _pTimer->TickQuantum; t -= _pTimer->TickQuantum; } #else // increment the 'real time' timer _pTimer->tm_RealTimeTimer += _pTimer->TickQuantum; #endif // get the current time for real and in ticks CTimerValue tvTimeNow = _pTimer->GetHighPrecisionTimer(); TIME tmTickNow = _pTimer->tm_RealTimeTimer; // calculate how long has passed since we have last been on time TIME tmTimeDelay = (TIME)(tvTimeNow - _pTimer->tm_tvLastTimeOnTime).GetSeconds(); TIME tmTickDelay = (tmTickNow - _pTimer->tm_tmLastTickOnTime); _sfStats.StartTimer(CStatForm::STI_TIMER); // if we are keeping up to time (more or less) // if (tmTimeDelay>=_pTimer->TickQuantum*0.9f) { // for all hooked handlers FOREACHINLIST(CTimerHandler, th_Node, _pTimer->tm_lhHooks, itth) { // handle itth->HandleTimer(); } // } _sfStats.StopTimer(CStatForm::STI_TIMER); // remember that we have been on time now _pTimer->tm_tvLastTimeOnTime = tvTimeNow; _pTimer->tm_tmLastTickOnTime = tmTickNow; // } CTSTREAM_END; } // !!! FIXME : rcg10192001 Abstract this! #if (!defined SINGLE_THREADED) #ifdef PLATFORM_WIN32 void __stdcall CTimer_TimerFunc(UINT uID, UINT uMsg, ULONG dwUser, ULONG dw1, ULONG dw2) { // access to the list of handlers must be locked CTSingleLock slHooks(&_pTimer->tm_csHooks, TRUE); // handle all timers CTimer_TimerFunc_internal(); } #elif (defined PLATFORM_UNIX) #include "SDL.h" Uint32 CTimer_TimerFunc_SDL(Uint32 interval) { // access to the list of handlers must be locked CTSingleLock slHooks(&_pTimer->tm_csHooks, TRUE); // handle all timers CTimer_TimerFunc_internal(); return(interval); } #endif #endif #pragma inline_depth() #define MAX_MEASURE_TRIES 5 static INDEX _aiTries[MAX_MEASURE_TRIES]; // Get processor speed in Hertz static __int64 GetCPUSpeedHz(void) { #ifdef PLATFORM_WIN32 // get the frequency of the 'high' precision timer __int64 llTimerFrequency; BOOL bPerformanceCounterPresent = QueryPerformanceFrequency((LARGE_INTEGER*)&llTimerFrequency); // fail if the performance counter is not available on this system if( !bPerformanceCounterPresent) { CPrintF( TRANS("PerformanceTimer is not available!\n")); return 1; } INDEX iSpeed, iTry; INDEX ctTotalFaults=0; __int64 llTimeLast, llTimeNow; __int64 llCPUBefore, llCPUAfter; __int64 llTimeBefore, llTimeAfter; __int64 llSpeedMeasured; // try to measure 10 times for( INDEX iSet=0; iSet<10; iSet++) { // one time has several tries for( iTry=0; iTry iTolerance) ctFaults++; } // done if no faults if( ctFaults==0) break; Sleep(1000); } // fail if couldn't readout CPU speed if( iSet==10) { CPrintF( TRANS("PerformanceTimer is not vaild!\n")); //return 1; // NOTE: this function must never fail, or the engine will crash! // if this failed, the speed will be read from registry (only happens on Win2k) } // keep readout speed and read speed from registry const SLONG slSpeedRead = _aiTries[0]; SLONG slSpeedReg = 0; BOOL bFoundInReg = REG_GetLong("HKEY_LOCAL_MACHINE\\HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0\\~MHz", (ULONG&)slSpeedReg); // if not found in registry if( !bFoundInReg) { // use measured CPrintF(TRANS(" CPU speed not found in registry, using calculated value\n\n")); return (__int64)slSpeedRead*1000000; // if found in registry } else { // if different than measured const INDEX iTolerance = slSpeedRead *1/100; // %1 tolerance should be enough if( abs(slSpeedRead-slSpeedReg) > iTolerance) { // report warning and use registry value CPrintF(TRANS(" WARNING: calculated CPU speed different than stored in registry!\n\n")); return (__int64)slSpeedReg*1000000; } // use measured value return (__int64)slSpeedRead*1000000; } #else STUBBED("I hope this isn't critical..."); return(1); #endif } #if PLATFORM_MACOSX extern "C" { signed int GetCPUSpeed(void); } // carbon function, avoid header. #endif /* * Constructor. */ CTimer::CTimer(BOOL bInterrupt /*=TRUE*/) { #if (defined SINGLE_THREADED) bInterrupt = FALSE; #endif tm_csHooks.cs_iIndex = 1000; // set global pointer ASSERT(_pTimer == NULL); _pTimer = this; tm_bInterrupt = bInterrupt; #if USE_GETTIMEOFDAY // just use gettimeofday. tm_llCPUSpeedHZ = tm_llPerformanceCounterFrequency = 1000000; #elif PLATFORM_WIN32 { // this part of code must be executed as precisely as possible CSetPriority sp(REALTIME_PRIORITY_CLASS, THREAD_PRIORITY_TIME_CRITICAL); tm_llCPUSpeedHZ = GetCPUSpeedHz(); tm_llPerformanceCounterFrequency = tm_llCPUSpeedHZ; // measure profiling errors and set epsilon corrections CProfileForm::CalibrateProfilingTimers(); } #elif PLATFORM_MACOSX tm_llPerformanceCounterFrequency = tm_llCPUSpeedHZ = ((__int64) GetCPUSpeed()) * 1000000; #else // !!! FIXME : This is an ugly hack. double mhz = 0.0; const char *envmhz = getenv("SERIOUS_MHZ"); if (envmhz != NULL) { mhz = atof(envmhz); } else { FILE *fp = fopen("/proc/cpuinfo", "rb"); if (fp != NULL) { char *buf = (char *) malloc(10240); // bleh. if (buf != NULL) { fread(buf, 10240, 1, fp); char *ptr = strstr(buf, "cpu MHz"); if (ptr != NULL) { ptr = strchr(ptr, ':'); if (ptr != NULL) { do { ptr++; } while ((*ptr == '\t') || (*ptr == ' ')); mhz = atof(ptr); } } free(buf); } fclose(fp); } } if (mhz == 0.0) { FatalError("Can't get CPU speed. Please set SERIOUS_MHZ environment variable."); } tm_llPerformanceCounterFrequency = tm_llCPUSpeedHZ = (__int64) (mhz * 1000000.0); #endif // clear counters _CurrentTickTimer = TIME(0); tm_RealTimeTimer = TIME(0); tm_tmLastTickOnTime = TIME(0); tm_tvLastTimeOnTime = GetHighPrecisionTimer(); // disable lerping by default tm_fLerpFactor = 1.0f; tm_fLerpFactor2 = 1.0f; // start interrupt (eventually) #if (defined SINGLE_THREADED) tm_InitialTimerUpkeep = GetHighPrecisionTimer(); #else if( tm_bInterrupt) { // !!! FIXME : rcg10192001 Abstract this! #ifdef PLATFORM_WIN32 tm_TimerID = timeSetEvent( ULONG(TickQuantum*1000.0f), // period value [ms] 0, // resolution (0==max. possible) &CTimer_TimerFunc, // callback 0, // user TIME_PERIODIC); // event type // check that interrupt was properly started if( tm_TimerID==NULL) FatalError(TRANS("Cannot initialize multimedia timer!")); #else if (SDL_Init(SDL_INIT_TIMER) == -1) FatalError(TRANS("Cannot initialize multimedia timer!")); SDL_SetTimer(ULONG(TickQuantum*1000.0f), CTimer_TimerFunc_SDL); #endif // make sure that timer interrupt is ticking INDEX iTry; for(iTry=1; iTry<=3; iTry++) { const TIME tmTickBefore = GetRealTimeTick(); Sleep(1000* iTry*3 *TickQuantum); const TIME tmTickAfter = GetRealTimeTick(); ASSERT(tmTickBefore <= tmTickAfter); if( tmTickBefore!=tmTickAfter) break; Sleep(1000*iTry); } // report fatal if( iTry>3) FatalError(TRANS("Problem with initializing multimedia timer - please try again.")); } #endif // !defined SINGLE_THREADED } /* * Destructor. */ CTimer::~CTimer(void) { // !!! FIXME : abstract this. #if (!defined SINGLE_THREADED) #ifdef PLATFORM_WIN32 ASSERT(_pTimer == this); // destroy timer if (tm_bInterrupt) { ASSERT(tm_TimerID); ULONG rval = timeKillEvent(tm_TimerID); ASSERT(rval == TIMERR_NOERROR); } // check that all handlers have been removed ASSERT(tm_lhHooks.IsEmpty()); #else SDL_SetTimer(0, NULL); #endif #endif // clear global pointer _pTimer = NULL; } /* * Add a timer handler. */ void CTimer::AddHandler(CTimerHandler *pthNew) { // access to the list of handlers must be locked CTSingleLock slHooks(&tm_csHooks, TRUE); ASSERT(this!=NULL); tm_lhHooks.AddTail(pthNew->th_Node); } /* * Remove a timer handler. */ void CTimer::RemHandler(CTimerHandler *pthOld) { // access to the list of handlers must be locked CTSingleLock slHooks(&tm_csHooks, TRUE); ASSERT(this!=NULL); pthOld->th_Node.Remove(); } /* Handle timer handlers manually. */ void CTimer::HandleTimerHandlers(void) { // access to the list of handlers must be locked CTSingleLock slHooks(&_pTimer->tm_csHooks, TRUE); // handle all timers CTimer_TimerFunc_internal(); } /* * Get current timer value of high precision timer. */ CTimerValue CTimer::GetHighPrecisionTimer(void) { return ReadTSC(); } /* * Set the real time tick value. */ void CTimer::SetRealTimeTick(TIME tNewRealTimeTick) { ASSERT(this!=NULL); tm_RealTimeTimer = tNewRealTimeTick; } /* * Get the real time tick value. */ TIME CTimer::GetRealTimeTick(void) const { ASSERT(this!=NULL); return tm_RealTimeTimer; } /* * Set the current game tick used for time dependent tasks (animations etc.). */ void CTimer::SetCurrentTick(TIME tNewCurrentTick) { ASSERT(this!=NULL); _CurrentTickTimer = tNewCurrentTick; } /* * Get current game time, always valid for the currently active task. */ const TIME CTimer::CurrentTick(void) const { ASSERT(this!=NULL); return _CurrentTickTimer; } const TIME CTimer::GetLerpedCurrentTick(void) const { ASSERT(this!=NULL); return _CurrentTickTimer+tm_fLerpFactor*TickQuantum; } // Set factor for lerping between ticks. void CTimer::SetLerp(FLOAT fFactor) // sets both primary and secondary { ASSERT(this!=NULL); tm_fLerpFactor = fFactor; tm_fLerpFactor2 = fFactor; } void CTimer::SetLerp2(FLOAT fFactor) // sets only secondary { ASSERT(this!=NULL); tm_fLerpFactor2 = fFactor; } // Disable lerping factor (set both factors to 1) void CTimer::DisableLerp(void) { ASSERT(this!=NULL); tm_fLerpFactor =1.0f; tm_fLerpFactor2=1.0f; } // convert a time value to a printable string (hh:mm:ss) CTString TimeToString(FLOAT fTime) { CTString strTime; int iSec = (int) floor(fTime); int iMin = iSec/60; iSec = iSec%60; int iHou = iMin/60; iMin = iMin%60; strTime.PrintF("%02d:%02d:%02d", iHou, iMin, iSec); return strTime; }