/* Copyright (c) 2002-2012 Croteam Ltd. This program is free software; you can redistribute it and/or modify it under the terms of version 2 of the GNU General Public License as published by the Free Software Foundation This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #ifndef SE_INCL_QUATERNION_H #define SE_INCL_QUATERNION_H #ifdef PRAGMA_ONCE #pragma once #endif #include <Engine/Base/Assert.h> #include <Engine/Math/Functions.h> /* * Template class for quaternion of arbitrary precision. */ template<class Type> class Quaternion { public: Type q_w, q_x, q_y, q_z; public: // default constructor inline Quaternion(void); // constructor from four scalar values inline Quaternion(Type w, Type x, Type y, Type z); // conversion from euler angles void FromEuler(const Vector<Type, 3> &a); inline Type EPS(Type orig) const; // conversion to matrix void ToMatrix(Matrix<Type, 3, 3> &m) const; // conversion from matrix void FromMatrix(Matrix<Type, 3, 3> &m); // conversion to/from axis-angle void FromAxisAngle(const Vector<Type, 3> &n, Type a); void ToAxisAngle(Vector<Type, 3> &n, Type &a); // unary minus (fliping of the quaternion) inline Quaternion<Type> operator-(void) const; // conjugation inline Quaternion<Type> operator~(void) const; // inversion inline Quaternion<Type> Inv(void) const; // multiplication/division by a scalar inline Quaternion<Type> operator*(Type t) const; inline Quaternion<Type> &operator*=(Type t); friend Quaternion<Type> operator*(Type t, Quaternion<Type> q) { return Quaternion<Type>(q.q_w*t, q.q_x*t, q.q_y*t, q.q_z*t); } inline Quaternion<Type> operator/(Type t) const; inline Quaternion<Type> &operator/=(Type t); // addition/substraction inline Quaternion<Type> operator+(const Quaternion<Type> &q2) const; inline Quaternion<Type> &operator+=(const Quaternion<Type> &q2); inline Quaternion<Type> operator-(const Quaternion<Type> &q2) const; inline Quaternion<Type> &operator-=(const Quaternion<Type> &q2); // multiplication inline Quaternion<Type> operator*(const Quaternion<Type> &q2) const; inline Quaternion<Type> &operator*=(const Quaternion<Type> &q2); // dot product inline Type operator%(const Quaternion<Type> &q2) const; // quaternion norm (euclidian length of a 4d vector) inline Type Norm(void) const; friend __forceinline CTStream &operator>>(CTStream &strm, Quaternion<Type> &q) { strm>>q.q_w; strm>>q.q_x; strm>>q.q_y; strm>>q.q_z; return strm; } friend __forceinline CTStream &operator<<(CTStream &strm, const Quaternion<Type> &q) { strm<<q.q_w; strm<<q.q_x; strm<<q.q_y; strm<<q.q_z; return strm; } // transcendental functions friend Quaternion<Type> Exp(const Quaternion<Type> &q) { Type tAngle = (Type)sqrt(q.q_x*q.q_x + q.q_y*q.q_y + q.q_z*q.q_z); Type tSin = sin(tAngle); Type tCos = cos(tAngle); if (fabs(tSin)<0.001) { return Quaternion<Type>(tCos, q.q_x, q.q_y, q.q_z); } else { Type tRatio = tSin/tAngle; return Quaternion<Type>(tCos, q.q_x*tRatio, q.q_y*tRatio, q.q_z*tRatio); } } friend Quaternion<Type> Log(const Quaternion<Type> &q) { if (fabs(q.q_w)<1.0) { Type tAngle = acos(q.q_w); Type tSin = sin(tAngle); if (fabs(tSin)>=0.001) { Type tRatio = tAngle/tSin; return Quaternion<Type>(Type(0), q.q_x*tRatio, q.q_y*tRatio, q.q_z*tRatio); } } return Quaternion<Type>(Type(0), q.q_x, q.q_y, q.q_z); } // spherical linear interpolation friend Quaternion<Type> Slerp(Type tT, const Quaternion<Type> &q1, const Quaternion<Type> &q2) { Type tCos = q1%q2; Quaternion<Type> qTemp; if (tCos<Type(0)) { tCos = -tCos; qTemp = -q2; } else { qTemp = q2; } Type tF1, tF2; if ((Type(1)-tCos) > Type(0.001)) { // standard case (slerp) Type tAngle = acos(tCos); Type tSin = sin(tAngle); tF1 = sin((Type(1)-tT)*tAngle)/tSin; tF2 = sin(tT*tAngle)/tSin; } else { // linear interpolation tF1 = Type(1)-tT; tF2 = tT; } return q1*tF1 + qTemp*tF2; } // spherical quadratic interpolation friend Quaternion<Type> Squad(Type tT, const Quaternion<Type> &q1, const Quaternion<Type> &q2, const Quaternion<Type> &qa, const Quaternion<Type> &qb) { return Slerp(2*tT*(1-tT),Slerp(tT,q1,q2),Slerp(tT,qa,qb)); } }; // inline functions implementation /* * Default constructor. */ template<class Type> inline Quaternion<Type>::Quaternion(void) {}; /* Constructor from three values. */ template<class Type> inline Quaternion<Type>::Quaternion(Type w, Type x, Type y, Type z) : q_w(w), q_x(x), q_y(y), q_z(z) {}; // unary minus (additive inversion) template<class Type> inline Quaternion<Type> Quaternion<Type>::operator-(void) const { return Quaternion<Type>(-q_w, -q_x, -q_y, -q_z); } // conjugation template<class Type> inline Quaternion<Type> Quaternion<Type>::operator~(void) const { return Quaternion<Type>(q_w, -q_x, -q_y, -q_z); } // multiplicative inversion template<class Type> inline Quaternion<Type> Quaternion<Type>::Inv(void) const { return (~(*this))/Norm(); } // multiplication/division by a scalar template<class Type> inline Quaternion<Type> Quaternion<Type>::operator*(Type t) const { return Quaternion<Type>(q_w*t, q_x*t, q_y*t, q_z*t); } template<class Type> inline Quaternion<Type> &Quaternion<Type>::operator*=(Type t) { q_w*=t; q_x*=t; q_y*=t; q_z*=t; return *this; } #if 0 template<class Type> inline Quaternion<Type> operator*(Type t, Quaternion<Type> q) { return Quaternion<Type>(q.q_w*t, q.q_x*t, q.q_y*t, q.q_z*t); } #endif template<class Type> inline Quaternion<Type> Quaternion<Type>::operator/(Type t) const { return Quaternion<Type>(q_w/t, q_x/t, q_y/t, q_z/t); } template<class Type> inline Quaternion<Type> &Quaternion<Type>::operator/=(Type t) { q_w/=t; q_x/=t; q_y/=t; q_z/=t; return *this; } // addition/substraction template<class Type> inline Quaternion<Type> Quaternion<Type>::operator+(const Quaternion<Type> &q2) const { return Quaternion<Type>(q_w+q2.q_w, q_x+q2.q_x, q_y+q2.q_y, q_z+q2.q_z); } template<class Type> inline Quaternion<Type> &Quaternion<Type>::operator+=(const Quaternion<Type> &q2) { q_w+=q2.q_w; q_x+=q2.q_x; q_y+=q2.q_y; q_z+=q2.q_z; return *this; } template<class Type> inline Quaternion<Type> Quaternion<Type>::operator-(const Quaternion<Type> &q2) const { return Quaternion<Type>(q_w-q2.q_w, q_x-q2.q_x, q_y-q2.q_y, q_z-q2.q_z); } template<class Type> inline Quaternion<Type> &Quaternion<Type>::operator-=(const Quaternion<Type> &q2) { q_w-=q2.q_w; q_x-=q2.q_x; q_y-=q2.q_y; q_z-=q2.q_z; return *this; } // multiplication template<class Type> inline Quaternion<Type> Quaternion<Type>::operator*(const Quaternion<Type> &q2) const { return Quaternion<Type>( q_w*q2.q_w - q_x*q2.q_x - q_y*q2.q_y - q_z*q2.q_z, q_w*q2.q_x + q_x*q2.q_w + q_y*q2.q_z - q_z*q2.q_y, q_w*q2.q_y - q_x*q2.q_z + q_y*q2.q_w + q_z*q2.q_x, q_w*q2.q_z + q_x*q2.q_y - q_y*q2.q_x + q_z*q2.q_w); } template<class Type> inline Quaternion<Type> &Quaternion<Type>::operator*=(const Quaternion<Type> &q2) { *this = (*this)*q2; return *this; } // dot product template<class Type> inline Type Quaternion<Type>::operator%(const Quaternion<Type> &q2) const { return q_w*q2.q_w + q_x*q2.q_x + q_y*q2.q_y + q_z*q2.q_z; } // quaternion norm (euclidian length of a 4d vector) template<class Type> inline Type Quaternion<Type>::Norm(void) const { return (Type)sqrt(q_w*q_w + q_x*q_x + q_y*q_y + q_z*q_z); } #if 0 // transcendental functions template<class Type> inline Quaternion<Type> Exp(const Quaternion<Type> &q) { Type tAngle = (Type)sqrt(q.q_x*q.q_x + q.q_y*q.q_y + q.q_z*q.q_z); Type tSin = sin(tAngle); Type tCos = cos(tAngle); if (fabs(tSin)<0.001) { return Quaternion<Type>(tCos, q.q_x, q.q_y, q.q_z); } else { Type tRatio = tSin/tAngle; return Quaternion<Type>(tCos, q.q_x*tRatio, q.q_y*tRatio, q.q_z*tRatio); } } // transcendental functions template<class Type> inline Quaternion<Type> Log(const Quaternion<Type> &q) { if (fabs(q.q_w)<1.0) { Type tAngle = acos(q.q_w); Type tSin = sin(tAngle); if (fabs(tSin)>=0.001) { Type tRatio = tAngle/tSin; return Quaternion<Type>(Type(0), q.q_x*tRatio, q.q_y*tRatio, q.q_z*tRatio); } } return Quaternion<Type>(Type(0), q.q_x, q.q_y, q.q_z); } // spherical linear interpolation template<class Type> inline Quaternion<Type> Slerp(Type tT, const Quaternion<Type> &q1, const Quaternion<Type> &q2) { Type tCos = q1%q2; Quaternion<Type> qTemp; if (tCos<Type(0)) { tCos = -tCos; qTemp = -q2; } else { qTemp = q2; } Type tF1, tF2; if ((Type(1)-tCos) > Type(0.001)) { // standard case (slerp) Type tAngle = acos(tCos); Type tSin = sin(tAngle); tF1 = sin((Type(1)-tT)*tAngle)/tSin; tF2 = sin(tT*tAngle)/tSin; } else { // linear interpolation tF1 = Type(1)-tT; tF2 = tT; } return q1*tF1 + qTemp*tF2; } // spherical quadratic interpolation template<class Type> inline Quaternion<Type> Squad(Type tT, const Quaternion<Type> &q1, const Quaternion<Type> &q2, const Quaternion<Type> &qa, const Quaternion<Type> &qb) { return Slerp(2*tT*(1-tT),Slerp(tT,q1,q2),Slerp(tT,qa,qb)); } #endif // conversion from euler angles template<class Type> void Quaternion<Type>::FromEuler(const Vector<Type, 3> &a) { Quaternion<Type> qH; Quaternion<Type> qP; Quaternion<Type> qB; qH.q_w = Cos(a(1)/2); qH.q_x = 0; qH.q_y = Sin(a(1)/2); qH.q_z = 0; qP.q_w = Cos(a(2)/2); qP.q_x = Sin(a(2)/2); qP.q_y = 0; qP.q_z = 0; qB.q_w = Cos(a(3)/2); qB.q_x = 0; qB.q_y = 0; qB.q_z = Sin(a(3)/2); (*this) = qH*qP*qB; } // Check for almost, not really, but should be 0.0 values... template<class Type> Type Quaternion<Type>::EPS(Type orig) const { if ((orig <= 10e-6f) && (orig >= -10e-6f)) return(0.0f); return(orig); } // conversion to matrix template<class Type> void Quaternion<Type>::ToMatrix(Matrix<Type, 3, 3> &m) const { Type xx = 2*q_x*q_x; Type xy = 2*q_x*q_y; Type xz = 2*q_x*q_z; Type yy = 2*q_y*q_y; Type yz = 2*q_y*q_z; Type zz = 2*q_z*q_z; Type wx = 2*q_w*q_x; Type wy = 2*q_w*q_y; Type wz = 2*q_w*q_z; m(1,1) = EPS(1.0f-(yy+zz));m(1,2) = EPS(xy-wz); m(1,3) = EPS(xz+wy); m(2,1) = EPS(xy+wz); m(2,2) = EPS(1.0f-(xx+zz));m(2,3) = EPS(yz-wx); m(3,1) = EPS(xz-wy); m(3,2) = EPS(yz+wx); m(3,3) = EPS(1.0f-(xx+yy)); } // conversion from matrix template<class Type> void Quaternion<Type>::FromMatrix(Matrix<Type, 3, 3> &m) { Type trace = m(1,1)+m(2,2)+m(3,3); Type root; if ( trace > 0.0f ) { // |w| > 1/2, may as well choose w > 1/2 root = sqrt(trace+1.0f); // 2w q_w = 0.5f*root; root = 0.5f/root; // 1/(4w) q_x = (m(3,2)-m(2,3))*root; q_y = (m(1,3)-m(3,1))*root; q_z = (m(2,1)-m(1,2))*root; } else { // |w| <= 1/2 static int next[3] = { 1, 2, 0 }; int i = 0; if ( m(2,2) > m(1,1) ) i = 1; if ( m(3,3) > m(i+1,i+1) ) i = 2; int j = next[i]; int k = next[j]; root = sqrt(m(i+1,i+1)-m(j+1,j+1)-m(k+1,k+1)+1.0f); Type* quat[3] = { &q_x, &q_y, &q_z }; *quat[i] = 0.5f*root; root = 0.5f/root; q_w = (m(k+1,j+1)-m(j+1,k+1))*root; *quat[j] = (m(j+1,i+1)+m(i+1,j+1))*root; *quat[k] = (m(k+1,i+1)+m(i+1,k+1))*root; } } // conversion to/from axis-angle template<class Type> void Quaternion<Type>::FromAxisAngle(const Vector<Type, 3> &n, Type a) { Type tSin = sin(a/2); Type tCos = cos(a/2); q_x = n(1)*tSin; q_y = n(2)*tSin; q_z = n(3)*tSin; q_w = tCos; } template<class Type> void Quaternion<Type>::ToAxisAngle(Vector<Type, 3> &n, Type &a) { Type tCos = q_w; Type tSin = sqrt(Type(1)-tCos*tCos); a = 2*acos(tCos); // if angle is not zero if (Abs(tSin)>=0.001) { n(1) = q_x / tSin; n(2) = q_y / tSin; n(3) = q_z / tSin; // if angle is zero } else { n(1) = Type(1); n(2) = Type(0); n(3) = Type(0); } } #endif /* include-once check. */