/* Copyright (c) 2002-2012 Croteam Ltd. This program is free software; you can redistribute it and/or modify it under the terms of version 2 of the GNU General Public License as published by the Free Software Foundation This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "Engine/StdH.h" #include #include #include #include #include #include #include #include // define this to dump all triangularization steps to debugging output //#define DUMP_ALLSTEPS 1 //#define OPERATEIN2D 1 // this must not be caught by the dependency catcher! static CTFileName _fnmDebugOutput(CTString("Temp\\Triangularization.out")); // set if debug output file is open static BOOL _bDebugOutputOpen = FALSE; // file where debugging output is written to static CTFileStream _strmDebugOutput; // edge splitting epsilon //#define EPSILON 0.0 //#define EPSILON (1.0/8388608.0) // 1/2^23 #define EPSILON (1.0f/65536.0f) // 1/2^16 //#define EPSILON DOUBLE(0.00390625) // 1/2^8 //#define EPSILON 0.0009765625f // 1/2^10 //#define EPSILON 0.03125f // 1/2^5 //#define EPSILON 0.00390625f // 1/2^8 // minimum triangle quality that is trivially accepted #define QUALITY_ACCEPTTRIVIALLY DOUBLE(0.01) // this function is here to satisfy compiler's weird need when compiling // the template for CDynamicArray inline void Clear(CBrushVertex *pbvx) { (void)pbvx; }; /* Algorithm used: We take each edge and each vertex that is left of that edge, and try to find out if the edge and the vertex can span a triangle on the polygon without itersecting any other edges. A simple convex BSP is used for testing intersection. The triangle edges are represented by planes oriented outwards (to the right side of the edge). Triangle quality is defined as division of the area and square of the length of the longest edge. We always try to extract the triangle with the best quality. Note that clockwise triangles will have negative area. Also we remember if there is left and/or right edge that connects the edge and the vertex. That makes it posible to geometricaly remove the triangle from the array of edges if it satisfies. Although it is teoretically true that every polygon can be triangularized this way, it is not always possible to find triangle with positive area that doesn't intersect any edges in the polygon. This is due to the numerical inprecisions created during CSG or similar operations. Therefore, we define comparation between two triangles this way: (1) Triangle that doesn't intersect any edges is better than one that does. (2) When (1) is indeterminate, the one with greater quality is considered better. Note that a triangle with negative area can be found best. In such case, it is not really created, but only removed from the polygon. This is mostly the case with some small degenerate parts of polygons. This way, the problematic case is just eliminated without loosing too much precision in the triangularized representation of the polygon. This method can diverge by adding and removing same triangle repeatedly. Therefore, we don't always start at testing at the first edge in polygon, but move the starting point when we find some triangle, 'shuffling' the choices of new triangles that way. */ // a class that handles triangularization of a polygon class CTriangularizer { public: DOUBLE3D tr_vPolygonNormal; // reference to original polygon (just for debugging) CBrushPolygon &tr_bpoOriginalPolygon; // reference to original array of polygon edges CStaticArray &tr_abpeOriginalEdges; // temporary array of edges CDynamicArray tr_abedEdges; // major axes of the polygon plane INDEX tr_iAxis0; INDEX tr_iAxis1; // these describe the triangle curently considered CBrushEdge *tr_pbedLeft; // left edge of the triangle if found CBrushEdge *tr_pbedRight; // right edge of the triangle if found CBrushEdge *tr_pbedBottom; // bottom edge of the triangle CBrushVertex *tr_pbvxTopVertex; // top vertex of the triangle DOUBLEplane3D tr_plLeft; // splitter plane of left edge DOUBLEplane3D tr_plRight; // splitter plane of right edge DOUBLEplane3D tr_plBottom; // splitter plane of bottom edge DOUBLEplane3D tr_plEdgeConsidered; // splitter plane of the edge considered bottom // these describe the best triangle found yet DOUBLE tr_fQualityBest; // quality of the best triangle BOOL tr_bIntersectedBest; // set if best triangle intersects some edges CBrushEdge *tr_pbedLeftBest; // left edge of the triangle if found CBrushEdge *tr_pbedRightBest; // right edge of the triangle if found CBrushEdge *tr_pbedBottomBest; // bottom edge of the triangle CBrushVertex *tr_pbvxTopVertexBest; // top vertex of the triangle // get a vertex coordinates inline DOUBLE3D GetVertex(CBrushVertex *pbvx) const; /* Create a splitter plane for an edge. */ inline void EdgeToPlane(const DOUBLE3D &vVertex0, const DOUBLE3D &vVertex1, DOUBLEplane3D &plPlane) const; /* Clip edge to a plane and check if something remains behind. */ BOOL ClipEdge(DOUBLE3D &vVertex0, DOUBLE3D &vVertex1, const DOUBLEplane3D &plPlane) const; /* Check if an edge is entirely or partially inside considered triangle. */ BOOL EdgeInsideTriangle(const CBrushEdge *pbed) const; /* Calculate the quality of currently considered triangle. */ DOUBLE TriangleQuality(void) const; /* Check that duplicate or reverse edges do not exist. */ void CheckForInvalidEdges(void); /* Add given edge to temporary array. */ void AddEdge(CBrushVertex *pbvxVertex0, CBrushVertex *pbvxVertex1); /* Create an array of forward oriented edges from polygon edges of a polygon. */ void MakeEdgesForTriangularization(void); /* Test all edges for intersection with considered triangle. */ BOOL CheckTriangleAgainstEdges(void); /* Find best triangle in array of edges. */ void FindBestTriangle(void); /* Find if left/right triangle edges already exist. */ void FindExistingTriangleEdges(void); /* Remove best triangle from edges. */ void RemoveBestTriangleFromPolygon(void); /* Add best triangle to triangles. */ void AddBestTriangleToTriangles(void); /* Print a statement to debugging output file. */ void DPrintF(const char *strFormat, ...); /* Dump triangle edges to debug output. */ void DumpEdges(void); // find vertices used without duplication void FindVerticesUsed(void); // build array of element indices void MakeElements(void); public: // target array for resulting triangles CDynamicArray tr_apbvxTriangleVertices; // array for vertices without duplicates CStaticStackArray tr_apbvxVertices; // array for triangle elements CStaticArray tr_aiElements; /* Constructor - do triangularization for a polygon. */ CTriangularizer(CBrushPolygon &bpoOriginalPolygon); INDEX tr_iError; }; // get a vertex coordinates inline DOUBLE3D CTriangularizer::GetVertex(CBrushVertex *pbvx) const { #ifdef OPERATEIN2D return DOUBLE3D( pbvx->bvx_vdPreciseRelative(tr_iAxis0), pbvx->bvx_vdPreciseRelative(tr_iAxis1), 0); #else return pbvx->bvx_vdPreciseRelative; #endif } /* * Create a splitter plane for an edge. */ inline void CTriangularizer::EdgeToPlane(const DOUBLE3D &vVertex0, const DOUBLE3D &vVertex1, DOUBLEplane3D &plPlane) const { // make a plane containing the edge, perpendicular to the polygon plane, looking // to the right of the edge plPlane = DOUBLEplane3D((vVertex1-vVertex0)*tr_vPolygonNormal, vVertex0); } /* * Clip edge to a plane and check if something remains behind. */ BOOL CTriangularizer::ClipEdge(DOUBLE3D &vVertex0, DOUBLE3D &vVertex1, const DOUBLEplane3D &plPlane) const { // calculate point distances from clip plane DOUBLE fDistance0 = plPlane.PointDistance(vVertex0); DOUBLE fDistance1 = plPlane.PointDistance(vVertex1); /* ---- first point behind plane ---- */ if (fDistance0 < -EPSILON) { // if both are back if (fDistance1 < -EPSILON) { // whole edge is behind return TRUE; // if first is back, second front } else if (fDistance1 > +EPSILON) { // calculate intersection coordinates vVertex1 = vVertex0-(vVertex0-vVertex1)*fDistance0/(fDistance0-fDistance1); // the remaining part is behind return TRUE; // if first is back, second on the plane } else { // the whole edge is back return TRUE; } /* ---- first point in front of plane ---- */ } else if (fDistance0 > +EPSILON) { // if first is front, second back if (fDistance1 < -EPSILON) { // calculate intersection coordinates vVertex0 = vVertex1-(vVertex1-vVertex0)*fDistance1/(fDistance1-fDistance0); // the remaining part is behind return TRUE; // if both are front } else if (fDistance1 > +EPSILON) { // whole edge is front return FALSE; // if first is front, second on the plane } else { // whole edge is front return FALSE; } /* ---- first point on the plane ---- */ } else { // if first is on the plane, second back if (fDistance1 < -EPSILON) { // the whole edge is back return TRUE; // if first is on the plane, second front } else if (fDistance1 > +EPSILON) { // whole edge is front return FALSE; // if both are on the plane } else { // assume the whole edge is back (!!!! is this correct?) return TRUE; } } } /* * Check if an edge is entirely or partially inside considered triangle. */ BOOL CTriangularizer::EdgeInsideTriangle(const CBrushEdge *pbed) const { // copy edge vertices DOUBLE3D vVertex0, vVertex1; vVertex0 = GetVertex(pbed->bed_pbvxVertex0); vVertex1 = GetVertex(pbed->bed_pbvxVertex1); // try to clip it to each triangle edge in turn, // if anything remains behind - it is inside return (ClipEdge(vVertex0, vVertex1, tr_plLeft) &&ClipEdge(vVertex0, vVertex1, tr_plRight) &&ClipEdge(vVertex0, vVertex1, tr_plBottom)); } /* * Calculate the quality of currently considered triangle. */ DOUBLE CTriangularizer::TriangleQuality(void) const { DOUBLE3D vEdgeBottom = GetVertex(tr_pbedBottom->bed_pbvxVertex1) - GetVertex(tr_pbedBottom->bed_pbvxVertex0); DOUBLE3D vEdgeLeft = GetVertex(tr_pbedBottom->bed_pbvxVertex0) - GetVertex(tr_pbvxTopVertex); DOUBLE3D vEdgeRight = GetVertex(tr_pbvxTopVertex) - GetVertex(tr_pbedBottom->bed_pbvxVertex1); // calculate triangle normal as cross product of two edges DOUBLE3D vNormal = vEdgeLeft*(-vEdgeRight); // calculate area as half the length of the normal DOUBLE fArea = vNormal.Length()/ DOUBLE(2.0); // area must be initially positive ASSERT(fArea>=0); // if triangle normal is opposite to the polygon normal if (vNormal%tr_vPolygonNormal<0) { // make area negative fArea = -fArea; } // find length of all edges DOUBLE fLengthBottom = vEdgeBottom.Length(); DOUBLE fLengthLeft = vEdgeLeft .Length(); DOUBLE fLengthRight = vEdgeRight .Length(); // find maximum length DOUBLE fLengthMax = Max(fLengthBottom, Max(fLengthLeft, fLengthRight)); // maximum length must be positive ASSERT(fLengthMax>0.0f); // quality is division of the area and square of the length of the longest edge return fArea/(fLengthMax*fLengthMax); } /* * Create an array of forward oriented edges from polygon edges of a polygon. */ void CTriangularizer::MakeEdgesForTriangularization(void) { // get number of edges in polygon INDEX ctEdges = tr_abpeOriginalEdges.Count(); // create that much edges in the array CBrushEdge *pbedEdges = tr_abedEdges.New(ctEdges); tr_abedEdges.Lock(); // for each edge for(INDEX iEdge=0; iEdgebed_pbvxVertex1; bed.bed_pbvxVertex1 = bpe.bpe_pbedEdge->bed_pbvxVertex0; // if polygon edge is not reversed } else { // make edge in array normal bed.bed_pbvxVertex0 = bpe.bpe_pbedEdge->bed_pbvxVertex0; bed.bed_pbvxVertex1 = bpe.bpe_pbedEdge->bed_pbvxVertex1; } } tr_abedEdges.Unlock(); } /* * Add given edge to temporary array. */ void CTriangularizer::AddEdge(CBrushVertex *pbvxVertex0, CBrushVertex *pbvxVertex1) { #ifndef NDEBUG // for each edge {FOREACHINDYNAMICARRAY(tr_abedEdges, CBrushEdge, itbed) { // must not exist if (itbed->bed_pbvxVertex0 == pbvxVertex0 &&itbed->bed_pbvxVertex1 == pbvxVertex1) { return; } ASSERT(itbed->bed_pbvxVertex0 != pbvxVertex0 ||itbed->bed_pbvxVertex1 != pbvxVertex1); // must not have reverse ASSERT(itbed->bed_pbvxVertex0 != pbvxVertex1 ||itbed->bed_pbvxVertex1 != pbvxVertex0); }} #endif // add new edge CBrushEdge *pbedNew = tr_abedEdges.New(1); pbedNew->bed_pbvxVertex0 = pbvxVertex0; pbedNew->bed_pbvxVertex1 = pbvxVertex1; } /* * Check that duplicate or reverse edges do not exist. */ void CTriangularizer::CheckForInvalidEdges(void) { // for each edge {FOREACHINDYNAMICARRAY(tr_abedEdges, CBrushEdge, itbed1) { // for each edge {FOREACHINDYNAMICARRAY(tr_abedEdges, CBrushEdge, itbed2) { // if same edge if (&*itbed1 == &*itbed2) { // skip continue; } CBrushEdge *pbed1 = itbed1; CBrushEdge *pbed2 = itbed2; // must not exist ASSERT(pbed1->bed_pbvxVertex0 != pbed2->bed_pbvxVertex0 ||pbed1->bed_pbvxVertex1 != pbed2->bed_pbvxVertex1); // must not have reverse ASSERT(pbed1->bed_pbvxVertex0 != pbed2->bed_pbvxVertex1 ||pbed1->bed_pbvxVertex1 != pbed2->bed_pbvxVertex0); }} }} } /* * Add best triangle to triangles. */ void CTriangularizer::AddBestTriangleToTriangles(void) { // add the triangle to triangles CBrushVertex **ppbvxTriangle = tr_apbvxTriangleVertices.New(3); ppbvxTriangle[0] = tr_pbedBottomBest->bed_pbvxVertex0; ppbvxTriangle[1] = tr_pbedBottomBest->bed_pbvxVertex1; ppbvxTriangle[2] = tr_pbvxTopVertexBest; } /* * Remove best triangle from edges. */ void CTriangularizer::RemoveBestTriangleFromPolygon(void) { tr_pbedBottom = tr_pbedBottomBest; tr_pbvxTopVertex = tr_pbvxTopVertexBest; FindExistingTriangleEdges(); tr_pbedLeftBest = tr_pbedLeft; tr_pbedRightBest = tr_pbedRight; tr_pbedBottomBest = tr_pbedBottom; tr_pbvxTopVertexBest = tr_pbvxTopVertex; // if left edge was found if (tr_pbedLeftBest!=NULL) { // remove the left edge from the edges tr_abedEdges.Delete(tr_pbedLeftBest); // if left edge was not found } else { // add reverse of the left edge to the edges AddEdge(tr_pbedBottomBest->bed_pbvxVertex0, tr_pbvxTopVertexBest); } // if right edge was found if (tr_pbedRightBest!=NULL) { // remove the right edge from the edges tr_abedEdges.Delete(tr_pbedRightBest); // if right edge was not found } else { // add reverse of the right edge to the edges AddEdge(tr_pbvxTopVertexBest, tr_pbedBottomBest->bed_pbvxVertex1); } // remove the base edge from the edges tr_abedEdges.Delete(tr_pbedBottomBest); } /* * Find if left/right triangle edges already exist. */ void CTriangularizer::FindExistingTriangleEdges(void) { // initialize left edge as not existing tr_pbedLeft = NULL; // initialize right edge as not existing tr_pbedRight = NULL; // for each edge FOREACHINDYNAMICARRAY(tr_abedEdges, CBrushEdge, itbed) { //CBrushEdge *pbed = itbed; // if it is the bottom edge of the triangle if (tr_pbedBottom == itbed) { // do not test it for intersection NOTHING; // if it is not bottom edge of triangle } else { ASSERT(itbed->bed_pbvxVertex0 != tr_pbedBottom->bed_pbvxVertex0 ||itbed->bed_pbvxVertex1 != tr_pbedBottom->bed_pbvxVertex1); // if it is the left edge of the triangle if (itbed->bed_pbvxVertex1 == tr_pbedBottom->bed_pbvxVertex0 &&itbed->bed_pbvxVertex0 == tr_pbvxTopVertex) { // remember it as the left edge ASSERT(tr_pbedLeft==NULL); tr_pbedLeft = itbed; // if it is the right edge of the triangle } else if (itbed->bed_pbvxVertex0 == tr_pbedBottom->bed_pbvxVertex1 &&itbed->bed_pbvxVertex1 == tr_pbvxTopVertex) { // remember it as the right edge ASSERT(tr_pbedRight==NULL); tr_pbedRight = itbed; } } } } /* * Test all edges for intersection with considered triangle. */ BOOL CTriangularizer::CheckTriangleAgainstEdges(void) { // for each edge FOREACHINDYNAMICARRAY(tr_abedEdges, CBrushEdge, itbed) { //CBrushEdge *pbed = itbed; // if it is the bottom edge of the triangle if (tr_pbedBottom == itbed) { // do not test it for intersection NOTHING; // if it is not bottom edge of triangle } else { ASSERT(itbed->bed_pbvxVertex0 != tr_pbedBottom->bed_pbvxVertex0 ||itbed->bed_pbvxVertex1 != tr_pbedBottom->bed_pbvxVertex1); // if it is the left edge of the triangle if (itbed->bed_pbvxVertex1 == tr_pbedBottom->bed_pbvxVertex0 &&itbed->bed_pbvxVertex0 == tr_pbvxTopVertex) { // do not test it for intersection NOTHING; // if it is the right edge of the triangle } else if (itbed->bed_pbvxVertex0 == tr_pbedBottom->bed_pbvxVertex1 &&itbed->bed_pbvxVertex1 == tr_pbvxTopVertex) { // do not test it for intersection NOTHING; // if it is neither of triangle edges } else { // if this edge intersects with any of the triangle edges if (EdgeInsideTriangle(itbed)) { return TRUE; } } } } // if no intersections are found return FALSE; } // calculate edge direction (COPIED FROM CTMATH!) void EdgeDir(const DOUBLE3D &vPoint0, const DOUBLE3D &vPoint1, DOUBLE3D &vDirection, DOUBLE3D &vReferencePoint) { // if the vertices are reversed /* if (CompareVertices(vPoint0, vPoint1)<0) { // swap them Swap(vPoint0, vPoint1); // mark edge as reversed edx_bReverse = TRUE; // if the vertices are not reversed } else { // mark edge as not reversed edx_bReverse = FALSE; } */ // normalize the direction vDirection = (vPoint1-vPoint0).Normalize(); /* calculate the reference point on the line from any point on line (p) and direction (d): r = p - ((p.d)/(d.d))*d */ vReferencePoint = vPoint0 - vDirection * ((vPoint0 % vDirection))/(vDirection % vDirection); } /* * Print a statement to debugging output file. */ void CTriangularizer::DPrintF(const char *strFormat, ...) { char strBuffer[256]; // format the message in buffer va_list arg; va_start(arg, strFormat); vsprintf(strBuffer, strFormat, arg); va_end(arg); // if the debug output file is not open if (!_bDebugOutputOpen) { // open it try { _strmDebugOutput.Create_t(_fnmDebugOutput, CTStream::CM_TEXT); _bDebugOutputOpen = TRUE; // if not successful } catch (char *strError) { (void) strError; // print nothing return; } } // write the message to the file _strmDebugOutput.Write_t(strBuffer, strlen(strBuffer)); } /* * Dump triangle edges to debug output. */ void CTriangularizer::DumpEdges(void) { DPrintF("%d\n", tr_abedEdges.Count()); FOREACHINDYNAMICARRAY(tr_abedEdges, CBrushEdge, itbed) { DPrintF("(%f, %f) ->", GetVertex(itbed->bed_pbvxVertex0)(1), GetVertex(itbed->bed_pbvxVertex0)(2)); DPrintF(" (%f, %f) ", GetVertex(itbed->bed_pbvxVertex1)(1), GetVertex(itbed->bed_pbvxVertex1)(2)); DOUBLE3D vDirection, vReferencePoint; EdgeDir( GetVertex(itbed->bed_pbvxVertex0), GetVertex(itbed->bed_pbvxVertex1), vDirection, vReferencePoint); DPrintF("[(%f, %f), ", vDirection(1), vDirection(2)); DPrintF("(%f, %f)]\n", vReferencePoint(1), vReferencePoint(2)); } } // edge offsets used to 'shuffle' triangularization static INDEX iBottomEdgeOffset; static INDEX iTopEdgeOffset; /* * Find best triangle in array of edges. */ /* NOTE: Currently only searching for first acceptable triangle. */ void CTriangularizer::FindBestTriangle(void) { // clear best triangle description tr_fQualityBest = DOUBLE(-1E30); tr_bIntersectedBest = TRUE; tr_pbedLeftBest = NULL; tr_pbedRightBest = NULL; tr_pbedBottomBest = NULL; tr_pbvxTopVertexBest = NULL; iBottomEdgeOffset++; // for each edge tr_abedEdges.Lock(); INDEX ctEdges = tr_abedEdges.Count(); for(INDEX ibedBottom=0; ibedBottombed_pbvxVertex0 != tr_pbedBottom->bed_pbvxVertex1); // create bottom splitter EdgeToPlane(GetVertex(tr_pbedBottom->bed_pbvxVertex0), GetVertex(tr_pbedBottom->bed_pbvxVertex1), tr_plEdgeConsidered); iTopEdgeOffset++; // for each edge for(INDEX ibedTop=0; ibedTopbed_pbvxVertex0 || tr_pbvxTopVertex == tr_pbedBottom->bed_pbvxVertex1) { // skip this triangle continue; } // create bottom splitter from the bottom edge splitter tr_plBottom = tr_plEdgeConsidered; // create left splitter EdgeToPlane(GetVertex(tr_pbvxTopVertex), GetVertex(tr_pbedBottom->bed_pbvxVertex0), tr_plLeft); // create right splitter EdgeToPlane(GetVertex(tr_pbedBottom->bed_pbvxVertex1), GetVertex(tr_pbvxTopVertex), tr_plRight); // calculate its quality DOUBLE fCurrentQuality = TriangleQuality(); // if triangle is clockwise if (fCurrentQuality<0) { continue; // reverse its splitters tr_plLeft.Flip(); tr_plRight.Flip(); tr_plBottom.Flip(); } // check if no edges intersect with considered triangle BOOL bCurrentIntersected = CheckTriangleAgainstEdges(); // if the current triangle is better than the best triangle yet if ((tr_bIntersectedBest && !bCurrentIntersected) ||(tr_bIntersectedBest==bCurrentIntersected && fCurrentQuality>tr_fQualityBest)) { // find if left/right triangle edges already exist. FindExistingTriangleEdges(); // set current triangle as best triangle tr_bIntersectedBest = bCurrentIntersected; tr_fQualityBest = fCurrentQuality; tr_pbedLeftBest = tr_pbedLeft; tr_pbedRightBest = tr_pbedRight; tr_pbedBottomBest = tr_pbedBottom; tr_pbvxTopVertexBest = tr_pbvxTopVertex; // if the triangle is trivially acceptable if (!bCurrentIntersected && fCurrentQuality>=QUALITY_ACCEPTTRIVIALLY) { // finish searching tr_abedEdges.Unlock(); return; } } } } tr_abedEdges.Unlock(); #if 0 // if no acceptable triangles have been found if (tr_fQualityBestbsc_abvxVertices, CBrushVertex, itbvx) { DPrintF("(0x%p, %f, %f, %f)\n", &(*itbvx), (*itbvx)(1), (*itbvx)(2), (*itbvx)(3)); } */ // dump remaining edges DPrintF("Triangularization failed!\n"); DPrintF("best quality found: %f\n", tr_fQualityBest); DPrintF("Remaining edges:\n"); DumpEdges(); /* // dump all edges tr_abedEdges.Clear(); MakeEdgesForTriangularization(); DumpEdges(); */ // error! ASSERTALWAYS("No acceptable triangles found for triangularization!"); FatalError("No acceptable triangles found for triangularization!\n" "Debugging information written to file '%s'.", _fnmDebugOutput); } #endif } // find vertices used without duplication void CTriangularizer::FindVerticesUsed(void) { // make an empty array that will contain the vertices tr_apbvxVertices.PopAll(); // for each triangle vertex tr_apbvxTriangleVertices.Lock(); for(INDEX ipbvx=0; ipbvxbpl_pldPreciseRelative.GetMaxNormal(); INDEX iMaxSign = Sgn(bpoOriginalPolygon.bpo_pbplPlane->bpl_pldPreciseRelative(iMaxNormal)); ASSERT(iMaxSign!=0); switch(iMaxNormal) { case 1: if (iMaxSign==-1) { tr_iAxis0 = 3; tr_iAxis1 = 2; tr_vPolygonNormal = DOUBLE3D(-1,0,0); } else { tr_iAxis0 = 2; tr_iAxis1 = 3; tr_vPolygonNormal = DOUBLE3D(1,0,0); } break; case 2: if (iMaxSign==-1) { tr_iAxis0 = 1; tr_iAxis1 = 3; tr_vPolygonNormal = DOUBLE3D(0,-1,0); } else { tr_iAxis0 = 3; tr_iAxis1 = 1; tr_vPolygonNormal = DOUBLE3D(0,1,0); } break; case 3: if (iMaxSign==-1) { tr_iAxis0 = 2; tr_iAxis1 = 1; tr_vPolygonNormal = DOUBLE3D(0,0,-1); } else { tr_iAxis0 = 1; tr_iAxis1 = 2; tr_vPolygonNormal = DOUBLE3D(0,0,1); } break; default: ASSERT(FALSE); tr_iAxis0 = 2; tr_iAxis1 = 3; tr_vPolygonNormal = DOUBLE3D(1,0,0); } tr_vPolygonNormal = DOUBLE3D(0,0,1); #else tr_iAxis0 = -1; tr_iAxis1 = -1; tr_vPolygonNormal = bpoOriginalPolygon.bpo_pbplPlane->bpl_pldPreciseRelative; #endif // create a dynamic array of edges MakeEdgesForTriangularization(); tr_iError = -1; // estimate max number of triangles INDEX ctOrgEdges = tr_abpeOriginalEdges.Count(); INDEX ctMaxHoles = ctOrgEdges; INDEX ctMaxTriangles = ctOrgEdges-2+2*ctMaxHoles; iBottomEdgeOffset = 0; iTopEdgeOffset = 0; #ifdef DUMP_ALLSTEPS DPrintF("PolygonBegin\n"); #endif // ASSERT(tr_abedEdges.Count()!=8); // while the array of edges is not empty //* INDEX iPasses = 0; while (tr_abedEdges.Count()>0) { // if total number of triangles is too large, or searching too long INDEX ctTriangles = tr_apbvxTriangleVertices.Count()/3; if (ctTriangles>ctMaxTriangles*2 || iPasses>ctMaxTriangles*2) { // error, quit triangulation tr_iError = 2; return; } #ifdef DUMP_ALLSTEPS // dump remaining edges DumpEdges(); #endif // find best triangle FindBestTriangle(); #ifdef DUMP_ALLSTEPS DPrintF("BestQuality=%f\n", tr_fQualityBest); #endif // if no triangle is found if (tr_fQualityBest<0.0) { // quit searching tr_iError = 1; return; } if (tr_bIntersectedBest) { // quit searching tr_iError = 3; return; } // if best triangle has positive quality if (tr_fQualityBest>0.0) { // add it to triangles AddBestTriangleToTriangles(); } // remove best triangle from edges RemoveBestTriangleFromPolygon(); #ifndef NDEBUG // check that there are no invalid edges after creating CheckForInvalidEdges(); #endif iPasses++; } tr_iError = 0; //*/ } /* * Make triangular representation of the polygon. */ void CBrushPolygon::Triangulate(void) { // if already triangulated if (bpo_apbvxTriangleVertices.Count()>0) { // do nothing return; } // triangularize the polygon CTriangularizer tr(*this); // find vertices used without duplication tr.FindVerticesUsed(); // build array of element indices tr.MakeElements(); // if there was an error if (tr.tr_iError!=0) { // report it // CPrintF( TRANS("Cannot properly triangulate a polygon: error %d!\n"), tr.tr_iError); // mark the polygon bpo_ulFlags|=BPOF_INVALIDTRIANGLES; // if there no errors } else { // mark the polygon as triangulated well bpo_ulFlags&=~BPOF_INVALIDTRIANGLES; } // copy dynamic array of triangles to the triangular representation of the polygon INDEX ctVertices = tr.tr_apbvxVertices.Count(); bpo_apbvxTriangleVertices.Clear(); bpo_apbvxTriangleVertices.New(ctVertices); for (INDEX iVertex=0; iVertex