/* Copyright (c) 2002-2012 Croteam Ltd. All rights reserved. */ #include "stdh.h" #include #include #include #include #include #include // asm shortcuts #define O offset #define Q qword ptr #define D dword ptr #define W word ptr #define B byte ptr extern INDEX tex_bProgressiveFilter; // filter mipmaps in creation time (not afterwards) // returns number of mip-maps to skip from original texture INDEX ClampTextureSize( PIX pixClampSize, PIX pixClampDimension, PIX pixSizeU, PIX pixSizeV) { __int64 pixMaxSize = (__int64)pixSizeU * (__int64)pixSizeV; PIX pixMaxDimension = Max( pixSizeU, pixSizeV); INDEX ctSkipMips = 0; while( (pixMaxSize>pixClampSize || pixMaxDimension>pixClampDimension) && pixMaxDimension>1) { ctSkipMips++; pixMaxDimension >>=1; pixMaxSize >>=2; } return ctSkipMips; } // retrives memory offset of a specified mip-map or a size of all mip-maps (IN PIXELS!) // (zero offset means first, i.e. largest mip-map) PIX GetMipmapOffset( INDEX iMipLevel, PIX pixWidth, PIX pixHeight) { PIX pixTexSize = 0; PIX pixMipSize = pixWidth*pixHeight; INDEX iMips = GetNoOfMipmaps( pixWidth, pixHeight); iMips = Min( iMips, iMipLevel); while( iMips>0) { pixTexSize +=pixMipSize; pixMipSize>>=2; iMips--; } return pixTexSize; } // return offset, pointer and dimensions of mipmap of specified size inside texture or shadowmap mipmaps INDEX GetMipmapOfSize( PIX pixWantedSize, ULONG *&pulFrame, PIX &pixWidth, PIX &pixHeight) { INDEX iMipOffset = 0; while( pixWidth>1 && pixHeight>1) { const PIX pixCurrentSize = pixWidth*pixHeight; if( pixCurrentSize <= pixWantedSize) break; // found pulFrame += pixCurrentSize; pixWidth >>=1; pixHeight>>=1; iMipOffset++; } // done return iMipOffset; } // adds 8-bit opaque alpha channel to 24-bit bitmap (in place supported) void AddAlphaChannel( UBYTE *pubSrcBitmap, ULONG *pulDstBitmap, PIX pixSize, UBYTE *pubAlphaBitmap) { UBYTE ubR,ubG,ubB, ubA=255; // loop backwards thru all bitmap pixels for( INDEX iPix=(pixSize-1); iPix>=0; iPix--) { ubR = pubSrcBitmap[iPix*3 +0]; ubG = pubSrcBitmap[iPix*3 +1]; ubB = pubSrcBitmap[iPix*3 +2]; if( pubAlphaBitmap!=NULL) ubA = pubAlphaBitmap[iPix]; else ubA = 255; // for the sake of forced RGBA internal formats! pulDstBitmap[iPix] = ByteSwap( RGBAToColor( ubR,ubG,ubB, ubA)); } } // removes 8-bit alpha channel from 32-bit bitmap (in place supported) void RemoveAlphaChannel( ULONG *pulSrcBitmap, UBYTE *pubDstBitmap, PIX pixSize) { UBYTE ubR,ubG,ubB; // loop thru all bitmap pixels for( INDEX iPix=0; iPix=0 && iFlipType<4); // no flipping ? PIX pixSize = pixWidth*pixHeight; if( iFlipType==0) { // copy bitmap only if needed INDEX ctBPP = (bAlphaChannel ? 4 : 3); if( pubSrc!=pubDst) memcpy( pubDst, pubSrc, pixSize*ctBPP); return; } // prepare images without alpha channels ULONG *pulNew = NULL; ULONG *pulNewSrc = (ULONG*)pubSrc; ULONG *pulNewDst = (ULONG*)pubDst; if( !bAlphaChannel) { pulNew = (ULONG*)AllocMemory( pixSize *BYTES_PER_TEXEL); AddAlphaChannel( pubSrc, pulNew, pixSize); pulNewSrc = pulNew; pulNewDst = pulNew; } // prepare half-width and half-height rounded const PIX pixHalfWidth = (pixWidth+1) /2; const PIX pixHalfHeight = (pixHeight+1)/2; // flip horizontal if( iFlipType==2 || iFlipType==3) { // for each row for( INDEX iRow=0; iRow1 && pixHeight>1); ASSERT( pixWidth == 1L<>=1; pixHeight>>=1; if( bBilinear) // type of filtering? { // BILINEAR __asm { pxor mm0,mm0 mov ebx,D [pixWidth] mov esi,D [pulSrcMipmap] mov edi,D [pulDstMipmap] mov edx,D [pixHeight] rowLoop: mov ecx,D [pixWidth] pixLoopN: movd mm1,D [esi+ 0] // up-left movd mm2,D [esi+ 4] // up-right movd mm3,D [esi+ ebx*8 +0] // down-left movd mm4,D [esi+ ebx*8 +4] // down-right punpcklbw mm1,mm0 punpcklbw mm2,mm0 punpcklbw mm3,mm0 punpcklbw mm4,mm0 paddw mm1,mm2 paddw mm1,mm3 paddw mm1,mm4 paddw mm1,Q [mmRounder] psrlw mm1,2 packuswb mm1,mm0 movd D [edi],mm1 // advance to next pixel add esi,4*2 add edi,4 dec ecx jnz pixLoopN // advance to next row lea esi,[esi+ ebx*8] // skip one row in source mip-map dec edx jnz rowLoop emms } } else { // NEAREST-NEIGHBOUR but with border preserving ULONG ulRowModulo = pixWidth*2 *BYTES_PER_TEXEL; __asm { xor ebx,ebx mov esi,D [pulSrcMipmap] mov edi,D [pulDstMipmap] // setup upper half mov edx,D [pixHeight] shr edx,1 halfLoop: mov ecx,D [pixWidth] shr ecx,1 leftLoop: mov eax,D [esi+ ebx*8+ 0] // upper-left (or lower-left) mov D [edi],eax // advance to next pixel add esi,4*2 add edi,4 sub ecx,1 jg leftLoop // do right row half mov ecx,D [pixWidth] shr ecx,1 jz halfEnd rightLoop: mov eax,D [esi+ ebx*8+ 4] // upper-right (or lower-right) mov D [edi],eax // advance to next pixel add esi,4*2 add edi,4 sub ecx,1 jg rightLoop halfEnd: // advance to next row add esi,D [ulRowModulo] // skip one row in source mip-map sub edx,1 jg halfLoop // do eventual lower half loop (if not yet done) mov edx,D [pixHeight] shr edx,1 jz fullEnd cmp ebx,D [pixWidth] mov ebx,D [pixWidth] jne halfLoop fullEnd: } } } // makes ALL lower mipmaps (to size of 1x1!) of a specified 32-bit bitmap // and returns pointer to newely created and mipmaped image // (only first ctFineMips number of mip-maps will be filtered with bilinear subsampling, while // all others will be downsampled with nearest-neighbour method) void MakeMipmaps( INDEX ctFineMips, ULONG *pulMipmaps, PIX pixWidth, PIX pixHeight, INDEX iFilter/*=NONE*/) { ASSERT( pixWidth>0 && pixHeight>0); _pfGfxProfile.StartTimer( CGfxProfile::PTI_MAKEMIPMAPS); // prepare some variables INDEX ctMipmaps = 1; PIX pixTexSize = 0; PIX pixCurrWidth = pixWidth; PIX pixCurrHeight = pixHeight; ULONG *pulSrcMipmap, *pulDstMipmap; // determine filtering mode (-1=prefiltering, 0=none, 1=postfiltering) INDEX iFilterMode = 0; if( iFilter!=0) { iFilterMode = -1; if( !tex_bProgressiveFilter) iFilterMode = +1; } // loop thru mip-map levels while( pixCurrWidth>1 && pixCurrHeight>1) { // determine mip size PIX pixMipSize = pixCurrWidth*pixCurrHeight; pulSrcMipmap = pulMipmaps + pixTexSize; pulDstMipmap = pulSrcMipmap + pixMipSize; // do pre filter is required if( iFilterMode<0) FilterBitmap( iFilter, pulSrcMipmap, pulSrcMipmap, pixCurrWidth, pixCurrHeight); // create one mipmap MakeOneMipmap( pulSrcMipmap, pulDstMipmap, pixCurrWidth, pixCurrHeight, ctMipmaps0) FilterBitmap( iFilter, pulSrcMipmap, pulSrcMipmap, pixCurrWidth, pixCurrHeight); // advance to next mipmap pixTexSize += pixMipSize; pixCurrWidth >>=1; pixCurrHeight >>=1; ctMipmaps++; } // all done _pfGfxProfile.StopTimer( CGfxProfile::PTI_MAKEMIPMAPS); } // mipmap colorization table (from 1024 to 1) static COLOR _acolMips[10] = { C_RED, C_GREEN, C_BLUE, C_CYAN, C_MAGENTA, C_YELLOW, C_RED, C_GREEN, C_BLUE, C_WHITE }; // colorize mipmaps void ColorizeMipmaps( INDEX i1stMipmapToColorize, ULONG *pulMipmaps, PIX pixWidth, PIX pixHeight) { // prepare ... ULONG *pulSrcMipmap = pulMipmaps + GetMipmapOffset( i1stMipmapToColorize, pixWidth, pixHeight); ULONG *pulDstMipmap; PIX pixCurrWidth = pixWidth >>i1stMipmapToColorize; PIX pixCurrHeight = pixHeight>>i1stMipmapToColorize; PIX pixMipSize; // skip too large textures const PIX pixMaxDim = Max( pixCurrWidth, pixCurrHeight); if( pixMaxDim>1024) return; INDEX iTableOfs = 10-FastLog2(pixMaxDim); // loop thru mip-map levels while( pixCurrWidth>1 && pixCurrHeight>1) { // prepare current mip-level pixMipSize = pixCurrWidth*pixCurrHeight; pulDstMipmap = pulSrcMipmap + pixMipSize; // mask mipmap const ULONG ulColorMask = ByteSwap( _acolMips[iTableOfs] | 0x3F3F3FFF); for( INDEX iPix=0; iPix>=1; pixCurrHeight >>=1; iTableOfs++; } } // calculates standard deviation of a bitmap DOUBLE CalcBitmapDeviation( ULONG *pulBitmap, PIX pixSize) { UBYTE ubR,ubG,ubB; ULONG ulSumR =0, ulSumG =0, ulSumB =0; __int64 mmSumR2=0, mmSumG2=0, mmSumB2=0; // calculate sum and sum^2 for( INDEX iPix=0; iPix=pixWidth && pixCanvasHeight>=pixHeight); SLONG slModulo = (pixCanvasWidth-pixWidth) *BYTES_PER_TEXEL; SLONG slWidthModulo = pixWidth*BYTES_PER_TEXEL +slModulo; // if bitmap is smaller than 4x2 pixels if( pixWidth<4 || pixHeight<2) { // don't dither it at all, rather copy only (if needed) if( pulDst!=pulSrc) memcpy( pulDst, pulSrc, pixCanvasWidth*pixCanvasHeight *BYTES_PER_TEXEL); goto theEnd; } // determine proper dither type switch( iDitherType) { // low dithers case 1: pulDitherTable = &ulDither2[0][0]; mmShift = 2; mmMask = 0x3F3F3F3F3F3F3F3F; goto ditherOrder; case 2: pulDitherTable = &ulDither2[0][0]; mmShift = 1; mmMask = 0x7F7F7F7F7F7F7F7F; goto ditherOrder; case 3: mmErrDiffMask = 0x0003000300030003; goto ditherError; // medium dithers case 4: pulDitherTable = &ulDither2[0][0]; mmShift = 0; mmMask = 0xFFFFFFFFFFFFFFFF; goto ditherOrder; case 5: pulDitherTable = &ulDither3[0][0]; mmShift = 1; mmMask = 0x7F7F7F7F7F7F7F7F; goto ditherOrder; case 6: pulDitherTable = &ulDither4[0][0]; mmShift = 1; mmMask = 0x7F7F7F7F7F7F7F7F; goto ditherOrder; case 7: mmErrDiffMask = 0x0007000700070007; goto ditherError; // high dithers case 8: pulDitherTable = &ulDither3[0][0]; mmShift = 0; mmMask = 0xFFFFFFFFFFFFFFFF; goto ditherOrder; case 9: pulDitherTable = &ulDither4[0][0]; mmShift = 0; mmMask = 0xFFFFFFFFFFFFFFFF; goto ditherOrder; case 10: mmErrDiffMask = 0x000F000F000F000F; goto ditherError; default: // improper dither type ASSERTALWAYS( "Improper dithering type."); // if bitmap copying is needed if( pulDst!=pulSrc) memcpy( pulDst, pulSrc, pixCanvasWidth*pixCanvasHeight *BYTES_PER_TEXEL); goto theEnd; } // ------------------------------- ordered matrix dithering routine ditherOrder: __asm { mov esi,D [pulSrc] mov edi,D [pulDst] mov ebx,D [pulDitherTable] // reset dither line offset xor eax,eax mov edx,D [pixHeight] rowLoopO: // get horizontal dither patterns movq mm4,Q [ebx+ eax*4 +0] movq mm5,Q [ebx+ eax*4 +8] psrlw mm4,Q [mmShift] psrlw mm5,Q [mmShift] pand mm4,Q [mmMask] pand mm5,Q [mmMask] // process row mov ecx,D [pixWidth] pixLoopO: movq mm1,Q [esi +0] movq mm2,Q [esi +8] paddusb mm1,mm4 paddusb mm2,mm5 movq Q [edi +0],mm1 movq Q [edi +8],mm2 // advance to next pixel add esi,4*4 add edi,4*4 sub ecx,4 jg pixLoopO // !!!! possible memory leak? je nextRowO // backup couple of pixels lea esi,[esi+ ecx*4] lea edi,[edi+ ecx*4] nextRowO: // get next dither line patterns add esi,D [slModulo] add edi,D [slModulo] add eax,1*4 and eax,4*4-1 // advance to next row dec edx jnz rowLoopO emms; } goto theEnd; // ------------------------------- error diffusion dithering routine ditherError: // since error diffusion algorithm requires in-place dithering, original bitmap must be copied if needed if( pulDst!=pulSrc) memcpy( pulDst, pulSrc, pixCanvasWidth*pixCanvasHeight *BYTES_PER_TEXEL); // slModulo+=4; // now, dither destination __asm { pxor mm0,mm0 mov esi,D [pulDst] mov ebx,D [pixCanvasWidth] mov edx,D [pixHeight] dec edx // need not to dither last row rowLoopE: // left to right mov ecx,D [pixWidth] dec ecx pixLoopEL: movd mm1,D [esi] punpcklbw mm1,mm0 pand mm1,Q [mmErrDiffMask] // determine errors movq mm3,mm1 movq mm5,mm1 movq mm7,mm1 pmullw mm3,Q [mmW3] pmullw mm5,Q [mmW5] pmullw mm7,Q [mmW7] psrlw mm3,4 // *3/16 psrlw mm5,4 // *5/16 psrlw mm7,4 // *7/16 psubw mm1,mm3 psubw mm1,mm5 psubw mm1,mm7 // *rest/16 packuswb mm1,mm0 packuswb mm3,mm0 packuswb mm5,mm0 packuswb mm7,mm0 // spread errors paddusb mm7,Q [esi+ +4] paddusb mm3,Q [esi+ ebx*4 -4] paddusb mm5,Q [esi+ ebx*4 +0] paddusb mm1,Q [esi+ ebx*4 +4] // !!!! possible memory leak? movd D [esi+ +4],mm7 movd D [esi+ ebx*4 -4],mm3 movd D [esi+ ebx*4 +0],mm5 movd D [esi+ ebx*4 +4],mm1 // advance to next pixel add esi,4 dec ecx jnz pixLoopEL // advance to next row add esi,D [slWidthModulo] dec edx jz allDoneE // right to left mov ecx,D [pixWidth] dec ecx pixLoopER: movd mm1,D [esi] punpcklbw mm1,mm0 pand mm1,Q [mmErrDiffMask] // determine errors movq mm3,mm1 movq mm5,mm1 movq mm7,mm1 pmullw mm3,Q [mmW3] pmullw mm5,Q [mmW5] pmullw mm7,Q [mmW7] psrlw mm3,4 // *3/16 psrlw mm5,4 // *5/16 psrlw mm7,4 // *7/16 psubw mm1,mm3 psubw mm1,mm5 psubw mm1,mm7 // *rest/16 packuswb mm1,mm0 packuswb mm3,mm0 packuswb mm5,mm0 packuswb mm7,mm0 // spread errors paddusb mm7,Q [esi+ -4] paddusb mm1,Q [esi+ ebx*4 -4] paddusb mm5,Q [esi+ ebx*4 +0] paddusb mm3,Q [esi+ ebx*4 +4] // !!!! possible memory leak? movd D [esi+ -4],mm7 movd D [esi+ ebx*4 -4],mm1 movd D [esi+ ebx*4 +0],mm5 movd D [esi+ ebx*4 +4],mm3 // revert to previous pixel sub esi,4 dec ecx jnz pixLoopER // advance to next row lea esi,[esi+ ebx*4] dec edx jnz rowLoopE allDoneE: emms; } goto theEnd; // all done theEnd: _pfGfxProfile.StopTimer( CGfxProfile::PTI_DITHERBITMAP); } // performs dithering of a 32-bit mipmaps (can be in-place) void DitherMipmaps( INDEX iDitherType, ULONG *pulSrc, ULONG *pulDst, PIX pixWidth, PIX pixHeight) { // safety check ASSERT( pixWidth>0 && pixHeight>0); // loop thru mipmaps PIX pixMipSize; while( pixWidth>0 && pixHeight>0) { // dither one mipmap DitherBitmap( iDitherType, pulSrc, pulDst, pixWidth, pixHeight); // advance to next mipmap pixMipSize = pixWidth*pixHeight; pulSrc += pixMipSize; pulDst += pixMipSize; pixWidth >>=1; pixHeight>>=1; } } // blur/sharpen filters static INDEX aiFilters[6][3] = { { 0, 1, 16 }, // minimum { 0, 2, 8 }, // low { 1, 2, 7 }, // medium { 1, 2, 3 }, // high { 3, 4, 5 }, // maximum { 1, 1, 1 }}; // // temp for middle pixels, vertical/horizontal edges, and corners static __int64 mmMc, mmMe, mmMm; // corner, edge, middle static __int64 mmEch, mmEm; // corner-high, middle #define mmEcl mmMc // corner-low #define mmEe mmMe // edge static __int64 mmCm; // middle #define mmCc mmMc // corner #define mmCe mmEch // edge static __int64 mmInvDiv; static __int64 mmAdd = 0x0007000700070007; // temp rows for in-place filtering support static ULONG aulRows[2048]; // FilterBitmap() INTERNAL: generates convolution filter matrix if needed static INDEX iLastFilter; static void GenerateConvolutionMatrix( INDEX iFilter) { // same as last? if( iLastFilter==iFilter) return; // update filter iLastFilter = iFilter; INDEX iFilterAbs = Abs(iFilter) -1; // convert convolution values to MMX format INDEX iMc = aiFilters[iFilterAbs][0]; // corner INDEX iMe = aiFilters[iFilterAbs][1]; // edge INDEX iMm = aiFilters[iFilterAbs][2]; // middle // negate values for sharpen filter case if( iFilter<0) { iMm += (iMe+iMc) *8; // (4*Edge + 4*Corner) *2 iMe = -iMe; iMc = -iMc; } // find values for edge and corner cases INDEX iEch = iMc + iMe; INDEX iEm = iMm + iMe; INDEX iCm = iEch + iEm; // prepare divider __int64 mm = ((__int64)ceil(65536.0f/(iMc*4+iMe*4+iMm))) & 0xFFFF; mmInvDiv = (mm<<48) | (mm<<32) | (mm<<16) | mm; // prepare filter values mm = iMc & 0xFFFF; mmMc = (mm<<48) | (mm<<32) | (mm<<16) | mm; mm = iMe & 0xFFFF; mmMe = (mm<<48) | (mm<<32) | (mm<<16) | mm; mm = iMm & 0xFFFF; mmMm = (mm<<48) | (mm<<32) | (mm<<16) | mm; mm = iEch & 0xFFFF; mmEch= (mm<<48) | (mm<<32) | (mm<<16) | mm; mm = iEm & 0xFFFF; mmEm = (mm<<48) | (mm<<32) | (mm<<16) | mm; mm = iCm & 0xFFFF; mmCm = (mm<<48) | (mm<<32) | (mm<<16) | mm; } // applies filter to bitmap void FilterBitmap( INDEX iFilter, ULONG *pulSrc, ULONG *pulDst, PIX pixWidth, PIX pixHeight, PIX pixCanvasWidth, PIX pixCanvasHeight) { _pfGfxProfile.StartTimer( CGfxProfile::PTI_FILTERBITMAP); ASSERT( iFilter>=-6 && iFilter<=+6); // adjust canvas size if( pixCanvasWidth ==0) pixCanvasWidth = pixWidth; if( pixCanvasHeight==0) pixCanvasHeight = pixHeight; ASSERT( pixCanvasWidth>=pixWidth && pixCanvasHeight>=pixHeight); // if bitmap is smaller than 4x4 if( pixWidth<4 || pixHeight<4) { // don't blur it at all, but eventually only copy if( pulDst!=pulSrc) memcpy( pulDst, pulSrc, pixCanvasWidth*pixCanvasHeight *BYTES_PER_TEXEL); _pfGfxProfile.StopTimer( CGfxProfile::PTI_FILTERBITMAP); return; } // prepare convolution matrix and row modulo iFilter = Clamp( iFilter, -6L, +6L); GenerateConvolutionMatrix( iFilter); SLONG slModulo1 = (pixCanvasWidth-pixWidth+1) *BYTES_PER_TEXEL; SLONG slCanvasWidth = pixCanvasWidth *BYTES_PER_TEXEL; // lets roll ... __asm { cld mov eax,D [pixCanvasWidth] // EAX = positive row offset mov edx,eax neg edx // EDX = negative row offset pxor mm0,mm0 mov esi,D [pulSrc] mov edi,D [pulDst] xor ebx,ebx // ----------------------- process upper left corner movd mm1,D [esi+ +0] movd mm2,D [esi+ +4] movd mm3,D [esi+ eax*4 +0] movd mm4,D [esi+ eax*4 +4] punpcklbw mm1,mm0 punpcklbw mm2,mm0 punpcklbw mm3,mm0 punpcklbw mm4,mm0 paddw mm2,mm3 pmullw mm1,Q [mmCm] pmullw mm2,Q [mmCe] pmullw mm4,Q [mmCc] paddw mm1,mm2 paddw mm1,mm4 paddsw mm1,Q [mmAdd] pmulhw mm1,Q [mmInvDiv] packuswb mm1,mm0 movd D [ebx+ aulRows],mm1 add esi,4 add ebx,4 // ----------------------- process upper edge pixels mov ecx,D [pixWidth] sub ecx,2 // for each pixel upperLoop: movd mm1,D [esi+ -4] movd mm2,D [esi+ +0] movd mm3,D [esi+ +4] movd mm4,D [esi+ eax*4 -4] movd mm5,D [esi+ eax*4 +0] movd mm6,D [esi+ eax*4 +4] punpcklbw mm1,mm0 punpcklbw mm2,mm0 punpcklbw mm3,mm0 punpcklbw mm4,mm0 punpcklbw mm5,mm0 punpcklbw mm6,mm0 paddw mm1,mm3 paddw mm4,mm6 pmullw mm1,Q [mmEch] pmullw mm2,Q [mmEm] pmullw mm4,Q [mmEcl] pmullw mm5,Q [mmEe] paddw mm1,mm2 paddw mm1,mm4 paddw mm1,mm5 paddsw mm1,Q [mmAdd] pmulhw mm1,Q [mmInvDiv] packuswb mm1,mm0 movd D [ebx+ aulRows],mm1 // advance to next pixel add esi,4 add ebx,4 dec ecx jnz upperLoop // ----------------------- process upper right corner movd mm1,D [esi+ -4] movd mm2,D [esi+ +0] movd mm3,D [esi+ eax*4 -4] movd mm4,D [esi+ eax*4 +0] punpcklbw mm1,mm0 punpcklbw mm2,mm0 punpcklbw mm3,mm0 punpcklbw mm4,mm0 paddw mm1,mm4 pmullw mm1,Q [mmCe] pmullw mm2,Q [mmCm] pmullw mm3,Q [mmCc] paddw mm1,mm2 paddw mm1,mm3 paddsw mm1,Q [mmAdd] pmulhw mm1,Q [mmInvDiv] packuswb mm1,mm0 movd D [ebx+ aulRows],mm1 // ----------------------- process bitmap middle pixels add esi,D [slModulo1] add edi,D [slCanvasWidth] mov ebx,D [pixHeight] sub ebx,2 // for each row rowLoop: push ebx xor ebx,ebx // process left edge pixel movd mm1,D [esi+ edx*4 +0] movd mm2,D [esi+ edx*4 +4] movd mm3,D [esi+ +0] movd mm4,D [esi+ +4] movd mm5,D [esi+ eax*4 +0] movd mm6,D [esi+ eax*4 +4] punpcklbw mm1,mm0 punpcklbw mm2,mm0 punpcklbw mm3,mm0 punpcklbw mm4,mm0 punpcklbw mm5,mm0 punpcklbw mm6,mm0 paddw mm1,mm5 paddw mm2,mm6 pmullw mm1,Q [mmEch] pmullw mm2,Q [mmEcl] pmullw mm3,Q [mmEm] pmullw mm4,Q [mmEe] paddw mm1,mm2 paddw mm1,mm3 paddw mm1,mm4 paddsw mm1,Q [mmAdd] pmulhw mm1,Q [mmInvDiv] packuswb mm1,mm0 movd mm2,D [ebx+ aulRows] movd D [ebx+ aulRows],mm1 movd D [edi+ edx*4],mm2 add esi,4 add edi,4 add ebx,4 // for each pixel in current row mov ecx,D [pixWidth] sub ecx,2 pixLoop: // prepare upper convolution row movd mm1,D [esi+ edx*4 -4] movd mm2,D [esi+ edx*4 +0] movd mm3,D [esi+ edx*4 +4] punpcklbw mm1,mm0 punpcklbw mm2,mm0 punpcklbw mm3,mm0 // prepare middle convolution row movd mm4,D [esi+ -4] movd mm5,D [esi+ +0] movd mm6,D [esi+ +4] punpcklbw mm4,mm0 punpcklbw mm5,mm0 punpcklbw mm6,mm0 // free some registers paddw mm1,mm3 paddw mm2,mm4 pmullw mm5,Q [mmMm] // prepare lower convolution row movd mm3,D [esi+ eax*4 -4] movd mm4,D [esi+ eax*4 +0] movd mm7,D [esi+ eax*4 +4] punpcklbw mm3,mm0 punpcklbw mm4,mm0 punpcklbw mm7,mm0 // calc weightened value paddw mm2,mm6 paddw mm1,mm3 paddw mm2,mm4 paddw mm1,mm7 pmullw mm2,Q [mmMe] pmullw mm1,Q [mmMc] paddw mm2,mm5 paddw mm1,mm2 // calc and store wightened value paddsw mm1,Q [mmAdd] pmulhw mm1,Q [mmInvDiv] packuswb mm1,mm0 movd mm2,D [ebx+ aulRows] movd D [ebx+ aulRows],mm1 movd D [edi+ edx*4],mm2 // advance to next pixel add esi,4 add edi,4 add ebx,4 dec ecx jnz pixLoop // process right edge pixel movd mm1,D [esi+ edx*4 -4] movd mm2,D [esi+ edx*4 +0] movd mm3,D [esi+ -4] movd mm4,D [esi+ +0] movd mm5,D [esi+ eax*4 -4] movd mm6,D [esi+ eax*4 +0] punpcklbw mm1,mm0 punpcklbw mm2,mm0 punpcklbw mm3,mm0 punpcklbw mm4,mm0 punpcklbw mm5,mm0 punpcklbw mm6,mm0 paddw mm1,mm5 paddw mm2,mm6 pmullw mm1,Q [mmEcl] pmullw mm2,Q [mmEch] pmullw mm3,Q [mmEe] pmullw mm4,Q [mmEm] paddw mm1,mm2 paddw mm1,mm3 paddw mm1,mm4 paddsw mm1,Q [mmAdd] pmulhw mm1,Q [mmInvDiv] packuswb mm1,mm0 movd mm2,D [ebx+ aulRows] movd D [ebx+ aulRows],mm1 movd D [edi+ edx*4],mm2 // advance to next row add esi,D [slModulo1] add edi,D [slModulo1] pop ebx dec ebx jnz rowLoop // ----------------------- process lower left corner xor ebx,ebx movd mm1,D [esi+ edx*4 +0] movd mm2,D [esi+ edx*4 +4] movd mm3,D [esi+ +0] movd mm4,D [esi+ +4] punpcklbw mm1,mm0 punpcklbw mm2,mm0 punpcklbw mm3,mm0 punpcklbw mm4,mm0 paddw mm1,mm4 pmullw mm1,Q [mmCe] pmullw mm2,Q [mmCc] pmullw mm3,Q [mmCm] paddw mm1,mm2 paddw mm1,mm3 paddsw mm1,Q [mmAdd] pmulhw mm1,Q [mmInvDiv] packuswb mm1,mm0 movd mm2,D [ebx+ aulRows] movd D [edi],mm1 movd D [edi+ edx*4],mm2 add esi,4 add edi,4 add ebx,4 // ----------------------- process lower edge pixels mov ecx,D [pixWidth] sub ecx,2 // for each pixel lowerLoop: movd mm1,D [esi+ edx*4 -4] movd mm2,D [esi+ edx*4 +0] movd mm3,D [esi+ edx*4 +4] movd mm4,D [esi+ -4] movd mm5,D [esi+ +0] movd mm6,D [esi+ +4] punpcklbw mm1,mm0 punpcklbw mm2,mm0 punpcklbw mm3,mm0 punpcklbw mm4,mm0 punpcklbw mm5,mm0 punpcklbw mm6,mm0 paddw mm1,mm3 paddw mm4,mm6 pmullw mm1,Q [mmEcl] pmullw mm2,Q [mmEe] pmullw mm4,Q [mmEch] pmullw mm5,Q [mmEm] paddw mm1,mm2 paddw mm1,mm4 paddw mm1,mm5 paddsw mm1,Q [mmAdd] pmulhw mm1,Q [mmInvDiv] packuswb mm1,mm0 movd mm2,D [ebx+ aulRows] movd D [edi],mm1 movd D [edi+ edx*4],mm2 // advance to next pixel add esi,4 add edi,4 add ebx,4 dec ecx jnz lowerLoop // ----------------------- lower right corners movd mm1,D [esi+ edx*4 -4] movd mm2,D [esi+ edx*4 +0] movd mm3,D [esi+ -4] movd mm4,D [esi+ +0] punpcklbw mm1,mm0 punpcklbw mm2,mm0 punpcklbw mm3,mm0 punpcklbw mm4,mm0 paddw mm2,mm3 pmullw mm1,Q [mmCc] pmullw mm2,Q [mmCe] pmullw mm4,Q [mmCm] paddw mm1,mm2 paddw mm1,mm4 paddsw mm1,Q [mmAdd] pmulhw mm1,Q [mmInvDiv] packuswb mm1,mm0 movd mm2,D [ebx+ aulRows] movd D [edi],mm1 movd D [edi+ edx*4],mm2 emms } // all done (finally) _pfGfxProfile.StopTimer( CGfxProfile::PTI_FILTERBITMAP); } // saturate color of bitmap void AdjustBitmapColor( ULONG *pulSrc, ULONG *pulDst, PIX pixWidth, PIX pixHeight, SLONG const slHueShift, SLONG const slSaturation) { for( INDEX i=0; i<(pixWidth*pixHeight); i++) { pulDst[i] = ByteSwap( AdjustColor( ByteSwap(pulSrc[i]), slHueShift, slSaturation)); } } // create mip-map table for texture or shadow of given dimensions void MakeMipmapTable( PIX pixU, PIX pixV, MipmapTable &mmt) { mmt.mmt_pixU = pixU; mmt.mmt_pixV = pixV; // start at first mip map PIX pixCurrentU = mmt.mmt_pixU; PIX pixCurrentV = mmt.mmt_pixV; INDEX iMipmapCurrent = 0; SLONG slOffsetCurrent = 0; // while the mip-map is not zero-sized while (pixCurrentU>0 && pixCurrentV>0) { // remember its offset mmt.mmt_aslOffsets[iMipmapCurrent] = slOffsetCurrent; // go to next mip map slOffsetCurrent+=pixCurrentU*pixCurrentV; iMipmapCurrent++; pixCurrentU>>=1; pixCurrentV>>=1; } // remember number of mip maps and total size mmt.mmt_ctMipmaps = iMipmapCurrent; mmt.mmt_slTotalSize = slOffsetCurrent; } // TRIANGLE MASK RENDERING (FOR MODEL CLUSTER SHADOWS) ROUTINES static ULONG *_pulTexture; static PIX _pixTexWidth, _pixTexHeight; extern BOOL _bSomeDarkExists = FALSE; // set texture that will be used for all subsequent triangles void SetTriangleTexture( ULONG *pulCurrentMipmap, PIX pixMipWidth, PIX pixMipHeight) { _pulTexture = pulCurrentMipmap; _pixTexWidth = pixMipWidth; _pixTexHeight = pixMipHeight; } // render one triangle to mask plane for shadow casting purposes void DrawTriangle_Mask( UBYTE *pubMaskPlane, SLONG slMaskWidth, SLONG slMaskHeight, struct PolyVertex2D *ppv2Vtx1, struct PolyVertex2D *ppv2Vtx2, struct PolyVertex2D *ppv2Vtx3, BOOL bTransparency) { struct PolyVertex2D *pUpper = ppv2Vtx1; struct PolyVertex2D *pMiddle = ppv2Vtx2; struct PolyVertex2D *pLower = ppv2Vtx3; struct PolyVertex2D *pTmp; // sort vertices by J position if( pUpper->pv2_fJ > pMiddle->pv2_fJ) { pTmp = pUpper; pUpper = pMiddle; pMiddle = pTmp; } if( pUpper->pv2_fJ > pLower->pv2_fJ) { pTmp = pUpper; pUpper = pLower; pLower = pTmp; } if( pMiddle->pv2_fJ > pLower->pv2_fJ) { pTmp = pMiddle; pMiddle = pLower; pLower = pTmp; } // determine vertical deltas FLOAT fDJShort1 = pMiddle->pv2_fJ - pUpper->pv2_fJ; FLOAT fDJShort2 = pLower->pv2_fJ - pMiddle->pv2_fJ; FLOAT fDJLong = pLower->pv2_fJ - pUpper->pv2_fJ; if( fDJLong == 0) return; // determine horizontal deltas FLOAT fDIShort1 = pMiddle->pv2_fI - pUpper->pv2_fI; FLOAT fDIShort2 = pLower->pv2_fI - pMiddle->pv2_fI; FLOAT fDILong = pLower->pv2_fI - pUpper->pv2_fI; // determine U/K, V/K and 1/K deltas FLOAT fD1oKShort1 = pMiddle->pv2_f1oK - pUpper->pv2_f1oK; FLOAT fD1oKShort2 = pLower->pv2_f1oK - pMiddle->pv2_f1oK; FLOAT fD1oKLong = pLower->pv2_f1oK - pUpper->pv2_f1oK; FLOAT fDUoKShort1 = pMiddle->pv2_fUoK - pUpper->pv2_fUoK; FLOAT fDUoKShort2 = pLower->pv2_fUoK - pMiddle->pv2_fUoK; FLOAT fDUoKLong = pLower->pv2_fUoK - pUpper->pv2_fUoK; FLOAT fDVoKShort1 = pMiddle->pv2_fVoK - pUpper->pv2_fVoK; FLOAT fDVoKShort2 = pLower->pv2_fVoK - pMiddle->pv2_fVoK; FLOAT fDVoKLong = pLower->pv2_fVoK - pUpper->pv2_fVoK; // determine stepping factors; FLOAT f1oDJShort1, f1oDJShort2, f1oDJLong; if( fDJShort1 != 0) f1oDJShort1 = 1 / fDJShort1; else f1oDJShort1 = 0; if( fDJShort2 != 0) f1oDJShort2 = 1 / fDJShort2; else f1oDJShort2 = 0; if( fDJLong != 0) f1oDJLong = 1 / fDJLong; else f1oDJLong = 0; FLOAT fDIoDJShort1 = fDIShort1 * f1oDJShort1; FLOAT fDIoDJShort2 = fDIShort2 * f1oDJShort2; FLOAT fDIoDJLong = fDILong * f1oDJLong; FLOAT fMaxWidth = fDIoDJLong*fDJShort1 + pUpper->pv2_fI - pMiddle->pv2_fI; // determine drawing direction and factors by direction SLONG direction = +1; if( fMaxWidth > 0) direction = -1; // find start and end values for J PIX pixUpJ = FloatToInt(pUpper->pv2_fJ +0.5f); PIX pixMdJ = FloatToInt(pMiddle->pv2_fJ +0.5f); PIX pixDnJ = FloatToInt(pLower->pv2_fJ +0.5f); // clip vertically if( pixDnJ<0 || pixUpJ>=slMaskHeight) return; if( pixUpJ<0) pixUpJ=0; if( pixDnJ>slMaskHeight) pixDnJ=slMaskHeight; if( pixMdJ<0) pixMdJ=0; if( pixMdJ>slMaskHeight) pixMdJ=slMaskHeight; SLONG fixWidth = slMaskWidth<<11; // find prestepped I FLOAT fPrestepUp = (FLOAT)pixUpJ - pUpper->pv2_fJ; FLOAT fPrestepMd = (FLOAT)pixMdJ - pMiddle->pv2_fJ; SLONG fixILong = FloatToInt((pUpper->pv2_fI + fPrestepUp * fDIoDJLong )*2048.0f) +fixWidth*pixUpJ; SLONG fixIShort1 = FloatToInt((pUpper->pv2_fI + fPrestepUp * fDIoDJShort1)*2048.0f) +fixWidth*pixUpJ; SLONG fixIShort2 = FloatToInt((pMiddle->pv2_fI + fPrestepMd * fDIoDJShort2)*2048.0f) +fixWidth*pixMdJ; // convert steps from floats to fixints (21:11) SLONG fixDIoDJLong = FloatToInt(fDIoDJLong *2048.0f) +fixWidth; SLONG fixDIoDJShort1 = FloatToInt(fDIoDJShort1*2048.0f) +fixWidth; SLONG fixDIoDJShort2 = FloatToInt(fDIoDJShort2*2048.0f) +fixWidth; // find row counter and max delta J SLONG ctJShort1 = pixMdJ - pixUpJ; SLONG ctJShort2 = pixDnJ - pixMdJ; SLONG ctJLong = pixDnJ - pixUpJ; FLOAT currK, curr1oK, currUoK, currVoK; PIX pixJ = pixUpJ; // if model has texture and texture has alpha channel, do complex mapping thru texture's alpha channel if( _pulTexture!=NULL && bTransparency) { // calculate some texture variables FLOAT fD1oKoDJShort1 = fD1oKShort1 * f1oDJShort1; FLOAT fD1oKoDJShort2 = fD1oKShort2 * f1oDJShort2; FLOAT fD1oKoDJLong = fD1oKLong * f1oDJLong; FLOAT fDUoKoDJShort1 = fDUoKShort1 * f1oDJShort1; FLOAT fDUoKoDJShort2 = fDUoKShort2 * f1oDJShort2; FLOAT fDUoKoDJLong = fDUoKLong * f1oDJLong; FLOAT fDVoKoDJShort1 = fDVoKShort1 * f1oDJShort1; FLOAT fDVoKoDJShort2 = fDVoKShort2 * f1oDJShort2; FLOAT fDVoKoDJLong = fDVoKLong * f1oDJLong; ;// FactOverDI = (DFoDJ * (J2-J1) + fact1 - fact2) * 1/width FLOAT f1oMaxWidth = 1 / fMaxWidth; FLOAT fD1oKoDI = (fD1oKoDJLong * fDJShort1 + pUpper->pv2_f1oK - pMiddle->pv2_f1oK) * f1oMaxWidth; FLOAT fDUoKoDI = (fDUoKoDJLong * fDJShort1 + pUpper->pv2_fUoK - pMiddle->pv2_fUoK) * f1oMaxWidth; FLOAT fDVoKoDI = (fDVoKoDJLong * fDJShort1 + pUpper->pv2_fVoK - pMiddle->pv2_fVoK) * f1oMaxWidth; if( direction == -1) { fD1oKoDI = -fD1oKoDI; fDUoKoDI = -fDUoKoDI; fDVoKoDI = -fDVoKoDI; } // find prestepped U/K, V/K, 1/K FLOAT f1oKLong = pUpper->pv2_f1oK + fPrestepUp * fD1oKoDJLong; FLOAT f1oKShort1 = pUpper->pv2_f1oK + fPrestepUp * fD1oKoDJShort1; FLOAT f1oKShort2 = pMiddle->pv2_f1oK + fPrestepMd * fD1oKoDJShort2; FLOAT fUoKLong = pUpper->pv2_fUoK + fPrestepUp * fDUoKoDJLong; FLOAT fUoKShort1 = pUpper->pv2_fUoK + fPrestepUp * fDUoKoDJShort1; FLOAT fUoKShort2 = pMiddle->pv2_fUoK + fPrestepMd * fDUoKoDJShort2; FLOAT fVoKLong = pUpper->pv2_fVoK + fPrestepUp * fDVoKoDJLong; FLOAT fVoKShort1 = pUpper->pv2_fVoK + fPrestepUp * fDVoKoDJShort1; FLOAT fVoKShort2 = pMiddle->pv2_fVoK + fPrestepMd * fDVoKoDJShort2; // render upper triangle part PIX pixTexU, pixTexV; while( ctJShort1>0) { SLONG currI = fixILong>>11; SLONG countI = abs( currI - (fixIShort1>>11)); if( countI==0) goto nextLine1; curr1oK = f1oKLong; currUoK = fUoKLong; currVoK = fVoKLong; if( direction == -1) currI--; if( countI>0) _bSomeDarkExists = TRUE; while( countI>0) { currK = 1.0f/curr1oK; pixTexU = (FloatToInt(currUoK*currK)) & (_pixTexWidth -1); pixTexV = (FloatToInt(currVoK*currK)) & (_pixTexHeight-1); if( _pulTexture[pixTexV*_pixTexWidth+pixTexU] & ((CT_rAMASK<<7)&CT_rAMASK)) pubMaskPlane[currI] = 0; curr1oK += fD1oKoDI; currUoK += fDUoKoDI; currVoK += fDVoKoDI; currI += direction; countI--; } nextLine1: pixJ++; f1oKLong += fD1oKoDJLong; f1oKShort1 += fD1oKoDJShort1; fUoKLong += fDUoKoDJLong; fUoKShort1 += fDUoKoDJShort1; fVoKLong += fDVoKoDJLong; fVoKShort1 += fDVoKoDJShort1; fixILong += fixDIoDJLong; fixIShort1 += fixDIoDJShort1; ctJShort1--; } // render lower triangle part while( ctJShort2>0) { SLONG currI = fixILong>>11; SLONG countI = abs( currI - (fixIShort2>>11)); if( countI==0) goto nextLine2; curr1oK = f1oKLong; currUoK = fUoKLong; currVoK = fVoKLong; if( direction == -1) currI--; if( countI>0) _bSomeDarkExists = TRUE; while( countI>0) { currK = 1.0f/curr1oK; pixTexU = (FloatToInt(currUoK*currK)) & (_pixTexWidth -1); pixTexV = (FloatToInt(currVoK*currK)) & (_pixTexHeight-1); if( _pulTexture[pixTexV*_pixTexWidth+pixTexU] & CT_rAMASK) pubMaskPlane[currI] = 0; curr1oK += fD1oKoDI; currUoK += fDUoKoDI; currVoK += fDVoKoDI; currI += direction; countI--; } nextLine2: pixJ++; f1oKLong += fD1oKoDJLong; f1oKShort2 += fD1oKoDJShort2; fUoKLong += fDUoKoDJLong; fUoKShort2 += fDUoKoDJShort2; fVoKLong += fDVoKoDJLong; fVoKShort2 += fDVoKoDJShort2; fixILong += fixDIoDJLong; fixIShort2 += fixDIoDJShort2; ctJShort2--; } } // simple flat mapping (no texture at all) else { // render upper triangle part while( ctJShort1>0) { SLONG currI = fixILong>>11; SLONG countI = abs( currI - (fixIShort1>>11)); if( direction == -1) currI--; if( countI>0) _bSomeDarkExists = TRUE; while( countI>0) { pubMaskPlane[currI] = 0; currI += direction; countI--; } pixJ++; fixILong += fixDIoDJLong; fixIShort1 += fixDIoDJShort1; ctJShort1--; } // render lower triangle part while( ctJShort2>0) { SLONG currI = fixILong>>11; SLONG countI = abs( currI - (fixIShort2>>11)); if( countI>0) _bSomeDarkExists = TRUE; if( direction == -1) currI--; while( countI>0) { pubMaskPlane[currI] = 0; currI += direction; countI--; } pixJ++; fixILong += fixDIoDJLong; fixIShort2 += fixDIoDJShort2; ctJShort2--; } } } // --------------------------------------------------------------------------------------------- #if 0 // bilinear filtering of lower mipmap // row loop UBYTE r,g,b,a; for( PIX v=0; v>=2; gRes >>=2; bRes >>=2; aRes >>=2; pulDstMipmap[v*pixCurrWidth+u] = RGBAToColor( rRes,gRes,bRes,aRes); } } // nearest-neighbouring of lower mipmap (with border preservance) // row loop PIX u,v; for( v=0; v4 && pixHeight>4 /*&& tex_bBicubicMipmaps*/) { for( INDEX j=0; j>8, slG>>8, slB>>8, slA>>8); pulDstMipmap[j*pixWidth+i] = ByteSwap(col); } } } // bilinear! else { } #endif