mirror of
https://github.com/ptitSeb/Serious-Engine
synced 2025-01-15 07:45:22 +01:00
894 lines
40 KiB
C
894 lines
40 KiB
C
|
/* zlib.h -- interface of the 'zlib' general purpose compression library
|
||
|
version 1.1.3, July 9th, 1998
|
||
|
|
||
|
Copyright (C) 1995-1998 Jean-loup Gailly and Mark Adler
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied
|
||
|
warranty. In no event will the authors be held liable for any damages
|
||
|
arising from the use of this software.
|
||
|
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it
|
||
|
freely, subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not
|
||
|
claim that you wrote the original software. If you use this software
|
||
|
in a product, an acknowledgment in the product documentation would be
|
||
|
appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be
|
||
|
misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
|
||
|
Jean-loup Gailly Mark Adler
|
||
|
jloup@gzip.org madler@alumni.caltech.edu
|
||
|
|
||
|
|
||
|
The data format used by the zlib library is described by RFCs (Request for
|
||
|
Comments) 1950 to 1952 in the files ftp://ds.internic.net/rfc/rfc1950.txt
|
||
|
(zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format).
|
||
|
*/
|
||
|
|
||
|
#ifndef _ZLIB_H
|
||
|
#define _ZLIB_H
|
||
|
|
||
|
#include "zconf.h"
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
#define ZLIB_VERSION "1.1.3"
|
||
|
|
||
|
/*
|
||
|
The 'zlib' compression library provides in-memory compression and
|
||
|
decompression functions, including integrity checks of the uncompressed
|
||
|
data. This version of the library supports only one compression method
|
||
|
(deflation) but other algorithms will be added later and will have the same
|
||
|
stream interface.
|
||
|
|
||
|
Compression can be done in a single step if the buffers are large
|
||
|
enough (for example if an input file is mmap'ed), or can be done by
|
||
|
repeated calls of the compression function. In the latter case, the
|
||
|
application must provide more input and/or consume the output
|
||
|
(providing more output space) before each call.
|
||
|
|
||
|
The library also supports reading and writing files in gzip (.gz) format
|
||
|
with an interface similar to that of stdio.
|
||
|
|
||
|
The library does not install any signal handler. The decoder checks
|
||
|
the consistency of the compressed data, so the library should never
|
||
|
crash even in case of corrupted input.
|
||
|
*/
|
||
|
|
||
|
typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
|
||
|
typedef void (*free_func) OF((voidpf opaque, voidpf address));
|
||
|
|
||
|
struct internal_state;
|
||
|
|
||
|
typedef struct z_stream_s {
|
||
|
Bytef *next_in; /* next input byte */
|
||
|
uInt avail_in; /* number of bytes available at next_in */
|
||
|
uLong total_in; /* total nb of input bytes read so far */
|
||
|
|
||
|
Bytef *next_out; /* next output byte should be put there */
|
||
|
uInt avail_out; /* remaining free space at next_out */
|
||
|
uLong total_out; /* total nb of bytes output so far */
|
||
|
|
||
|
char *msg; /* last error message, NULL if no error */
|
||
|
struct internal_state FAR *state; /* not visible by applications */
|
||
|
|
||
|
alloc_func zalloc; /* used to allocate the internal state */
|
||
|
free_func zfree; /* used to free the internal state */
|
||
|
voidpf opaque; /* private data object passed to zalloc and zfree */
|
||
|
|
||
|
int data_type; /* best guess about the data type: ascii or binary */
|
||
|
uLong adler; /* adler32 value of the uncompressed data */
|
||
|
uLong reserved; /* reserved for future use */
|
||
|
} z_stream;
|
||
|
|
||
|
typedef z_stream FAR *z_streamp;
|
||
|
|
||
|
/*
|
||
|
The application must update next_in and avail_in when avail_in has
|
||
|
dropped to zero. It must update next_out and avail_out when avail_out
|
||
|
has dropped to zero. The application must initialize zalloc, zfree and
|
||
|
opaque before calling the init function. All other fields are set by the
|
||
|
compression library and must not be updated by the application.
|
||
|
|
||
|
The opaque value provided by the application will be passed as the first
|
||
|
parameter for calls of zalloc and zfree. This can be useful for custom
|
||
|
memory management. The compression library attaches no meaning to the
|
||
|
opaque value.
|
||
|
|
||
|
zalloc must return Z_NULL if there is not enough memory for the object.
|
||
|
If zlib is used in a multi-threaded application, zalloc and zfree must be
|
||
|
thread safe.
|
||
|
|
||
|
On 16-bit systems, the functions zalloc and zfree must be able to allocate
|
||
|
exactly 65536 bytes, but will not be required to allocate more than this
|
||
|
if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS,
|
||
|
pointers returned by zalloc for objects of exactly 65536 bytes *must*
|
||
|
have their offset normalized to zero. The default allocation function
|
||
|
provided by this library ensures this (see zutil.c). To reduce memory
|
||
|
requirements and avoid any allocation of 64K objects, at the expense of
|
||
|
compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h).
|
||
|
|
||
|
The fields total_in and total_out can be used for statistics or
|
||
|
progress reports. After compression, total_in holds the total size of
|
||
|
the uncompressed data and may be saved for use in the decompressor
|
||
|
(particularly if the decompressor wants to decompress everything in
|
||
|
a single step).
|
||
|
*/
|
||
|
|
||
|
/* constants */
|
||
|
|
||
|
#define Z_NO_FLUSH 0
|
||
|
#define Z_PARTIAL_FLUSH 1 /* will be removed, use Z_SYNC_FLUSH instead */
|
||
|
#define Z_SYNC_FLUSH 2
|
||
|
#define Z_FULL_FLUSH 3
|
||
|
#define Z_FINISH 4
|
||
|
/* Allowed flush values; see deflate() below for details */
|
||
|
|
||
|
#define Z_OK 0
|
||
|
#define Z_STREAM_END 1
|
||
|
#define Z_NEED_DICT 2
|
||
|
#define Z_ERRNO (-1)
|
||
|
#define Z_STREAM_ERROR (-2)
|
||
|
#define Z_DATA_ERROR (-3)
|
||
|
#define Z_MEM_ERROR (-4)
|
||
|
#define Z_BUF_ERROR (-5)
|
||
|
#define Z_VERSION_ERROR (-6)
|
||
|
/* Return codes for the compression/decompression functions. Negative
|
||
|
* values are errors, positive values are used for special but normal events.
|
||
|
*/
|
||
|
|
||
|
#define Z_NO_COMPRESSION 0
|
||
|
#define Z_BEST_SPEED 1
|
||
|
#define Z_BEST_COMPRESSION 9
|
||
|
#define Z_DEFAULT_COMPRESSION (-1)
|
||
|
/* compression levels */
|
||
|
|
||
|
#define Z_FILTERED 1
|
||
|
#define Z_HUFFMAN_ONLY 2
|
||
|
#define Z_DEFAULT_STRATEGY 0
|
||
|
/* compression strategy; see deflateInit2() below for details */
|
||
|
|
||
|
#define Z_BINARY 0
|
||
|
#define Z_ASCII 1
|
||
|
#define Z_UNKNOWN 2
|
||
|
/* Possible values of the data_type field */
|
||
|
|
||
|
#define Z_DEFLATED 8
|
||
|
/* The deflate compression method (the only one supported in this version) */
|
||
|
|
||
|
#define Z_NULL 0 /* for initializing zalloc, zfree, opaque */
|
||
|
|
||
|
#define zlib_version zlibVersion()
|
||
|
/* for compatibility with versions < 1.0.2 */
|
||
|
|
||
|
/* basic functions */
|
||
|
|
||
|
ZEXTERN const char * ZEXPORT zlibVersion OF((void));
|
||
|
/* The application can compare zlibVersion and ZLIB_VERSION for consistency.
|
||
|
If the first character differs, the library code actually used is
|
||
|
not compatible with the zlib.h header file used by the application.
|
||
|
This check is automatically made by deflateInit and inflateInit.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
|
||
|
|
||
|
Initializes the internal stream state for compression. The fields
|
||
|
zalloc, zfree and opaque must be initialized before by the caller.
|
||
|
If zalloc and zfree are set to Z_NULL, deflateInit updates them to
|
||
|
use default allocation functions.
|
||
|
|
||
|
The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
|
||
|
1 gives best speed, 9 gives best compression, 0 gives no compression at
|
||
|
all (the input data is simply copied a block at a time).
|
||
|
Z_DEFAULT_COMPRESSION requests a default compromise between speed and
|
||
|
compression (currently equivalent to level 6).
|
||
|
|
||
|
deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not
|
||
|
enough memory, Z_STREAM_ERROR if level is not a valid compression level,
|
||
|
Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
|
||
|
with the version assumed by the caller (ZLIB_VERSION).
|
||
|
msg is set to null if there is no error message. deflateInit does not
|
||
|
perform any compression: this will be done by deflate().
|
||
|
*/
|
||
|
|
||
|
|
||
|
ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
|
||
|
/*
|
||
|
deflate compresses as much data as possible, and stops when the input
|
||
|
buffer becomes empty or the output buffer becomes full. It may introduce some
|
||
|
output latency (reading input without producing any output) except when
|
||
|
forced to flush.
|
||
|
|
||
|
The detailed semantics are as follows. deflate performs one or both of the
|
||
|
following actions:
|
||
|
|
||
|
- Compress more input starting at next_in and update next_in and avail_in
|
||
|
accordingly. If not all input can be processed (because there is not
|
||
|
enough room in the output buffer), next_in and avail_in are updated and
|
||
|
processing will resume at this point for the next call of deflate().
|
||
|
|
||
|
- Provide more output starting at next_out and update next_out and avail_out
|
||
|
accordingly. This action is forced if the parameter flush is non zero.
|
||
|
Forcing flush frequently degrades the compression ratio, so this parameter
|
||
|
should be set only when necessary (in interactive applications).
|
||
|
Some output may be provided even if flush is not set.
|
||
|
|
||
|
Before the call of deflate(), the application should ensure that at least
|
||
|
one of the actions is possible, by providing more input and/or consuming
|
||
|
more output, and updating avail_in or avail_out accordingly; avail_out
|
||
|
should never be zero before the call. The application can consume the
|
||
|
compressed output when it wants, for example when the output buffer is full
|
||
|
(avail_out == 0), or after each call of deflate(). If deflate returns Z_OK
|
||
|
and with zero avail_out, it must be called again after making room in the
|
||
|
output buffer because there might be more output pending.
|
||
|
|
||
|
If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
|
||
|
flushed to the output buffer and the output is aligned on a byte boundary, so
|
||
|
that the decompressor can get all input data available so far. (In particular
|
||
|
avail_in is zero after the call if enough output space has been provided
|
||
|
before the call.) Flushing may degrade compression for some compression
|
||
|
algorithms and so it should be used only when necessary.
|
||
|
|
||
|
If flush is set to Z_FULL_FLUSH, all output is flushed as with
|
||
|
Z_SYNC_FLUSH, and the compression state is reset so that decompression can
|
||
|
restart from this point if previous compressed data has been damaged or if
|
||
|
random access is desired. Using Z_FULL_FLUSH too often can seriously degrade
|
||
|
the compression.
|
||
|
|
||
|
If deflate returns with avail_out == 0, this function must be called again
|
||
|
with the same value of the flush parameter and more output space (updated
|
||
|
avail_out), until the flush is complete (deflate returns with non-zero
|
||
|
avail_out).
|
||
|
|
||
|
If the parameter flush is set to Z_FINISH, pending input is processed,
|
||
|
pending output is flushed and deflate returns with Z_STREAM_END if there
|
||
|
was enough output space; if deflate returns with Z_OK, this function must be
|
||
|
called again with Z_FINISH and more output space (updated avail_out) but no
|
||
|
more input data, until it returns with Z_STREAM_END or an error. After
|
||
|
deflate has returned Z_STREAM_END, the only possible operations on the
|
||
|
stream are deflateReset or deflateEnd.
|
||
|
|
||
|
Z_FINISH can be used immediately after deflateInit if all the compression
|
||
|
is to be done in a single step. In this case, avail_out must be at least
|
||
|
0.1% larger than avail_in plus 12 bytes. If deflate does not return
|
||
|
Z_STREAM_END, then it must be called again as described above.
|
||
|
|
||
|
deflate() sets strm->adler to the adler32 checksum of all input read
|
||
|
so far (that is, total_in bytes).
|
||
|
|
||
|
deflate() may update data_type if it can make a good guess about
|
||
|
the input data type (Z_ASCII or Z_BINARY). In doubt, the data is considered
|
||
|
binary. This field is only for information purposes and does not affect
|
||
|
the compression algorithm in any manner.
|
||
|
|
||
|
deflate() returns Z_OK if some progress has been made (more input
|
||
|
processed or more output produced), Z_STREAM_END if all input has been
|
||
|
consumed and all output has been produced (only when flush is set to
|
||
|
Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
|
||
|
if next_in or next_out was NULL), Z_BUF_ERROR if no progress is possible
|
||
|
(for example avail_in or avail_out was zero).
|
||
|
*/
|
||
|
|
||
|
|
||
|
ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
|
||
|
/*
|
||
|
All dynamically allocated data structures for this stream are freed.
|
||
|
This function discards any unprocessed input and does not flush any
|
||
|
pending output.
|
||
|
|
||
|
deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
|
||
|
stream state was inconsistent, Z_DATA_ERROR if the stream was freed
|
||
|
prematurely (some input or output was discarded). In the error case,
|
||
|
msg may be set but then points to a static string (which must not be
|
||
|
deallocated).
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
|
||
|
|
||
|
Initializes the internal stream state for decompression. The fields
|
||
|
next_in, avail_in, zalloc, zfree and opaque must be initialized before by
|
||
|
the caller. If next_in is not Z_NULL and avail_in is large enough (the exact
|
||
|
value depends on the compression method), inflateInit determines the
|
||
|
compression method from the zlib header and allocates all data structures
|
||
|
accordingly; otherwise the allocation will be deferred to the first call of
|
||
|
inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to
|
||
|
use default allocation functions.
|
||
|
|
||
|
inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
|
||
|
memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
|
||
|
version assumed by the caller. msg is set to null if there is no error
|
||
|
message. inflateInit does not perform any decompression apart from reading
|
||
|
the zlib header if present: this will be done by inflate(). (So next_in and
|
||
|
avail_in may be modified, but next_out and avail_out are unchanged.)
|
||
|
*/
|
||
|
|
||
|
|
||
|
ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
|
||
|
/*
|
||
|
inflate decompresses as much data as possible, and stops when the input
|
||
|
buffer becomes empty or the output buffer becomes full. It may some
|
||
|
introduce some output latency (reading input without producing any output)
|
||
|
except when forced to flush.
|
||
|
|
||
|
The detailed semantics are as follows. inflate performs one or both of the
|
||
|
following actions:
|
||
|
|
||
|
- Decompress more input starting at next_in and update next_in and avail_in
|
||
|
accordingly. If not all input can be processed (because there is not
|
||
|
enough room in the output buffer), next_in is updated and processing
|
||
|
will resume at this point for the next call of inflate().
|
||
|
|
||
|
- Provide more output starting at next_out and update next_out and avail_out
|
||
|
accordingly. inflate() provides as much output as possible, until there
|
||
|
is no more input data or no more space in the output buffer (see below
|
||
|
about the flush parameter).
|
||
|
|
||
|
Before the call of inflate(), the application should ensure that at least
|
||
|
one of the actions is possible, by providing more input and/or consuming
|
||
|
more output, and updating the next_* and avail_* values accordingly.
|
||
|
The application can consume the uncompressed output when it wants, for
|
||
|
example when the output buffer is full (avail_out == 0), or after each
|
||
|
call of inflate(). If inflate returns Z_OK and with zero avail_out, it
|
||
|
must be called again after making room in the output buffer because there
|
||
|
might be more output pending.
|
||
|
|
||
|
If the parameter flush is set to Z_SYNC_FLUSH, inflate flushes as much
|
||
|
output as possible to the output buffer. The flushing behavior of inflate is
|
||
|
not specified for values of the flush parameter other than Z_SYNC_FLUSH
|
||
|
and Z_FINISH, but the current implementation actually flushes as much output
|
||
|
as possible anyway.
|
||
|
|
||
|
inflate() should normally be called until it returns Z_STREAM_END or an
|
||
|
error. However if all decompression is to be performed in a single step
|
||
|
(a single call of inflate), the parameter flush should be set to
|
||
|
Z_FINISH. In this case all pending input is processed and all pending
|
||
|
output is flushed; avail_out must be large enough to hold all the
|
||
|
uncompressed data. (The size of the uncompressed data may have been saved
|
||
|
by the compressor for this purpose.) The next operation on this stream must
|
||
|
be inflateEnd to deallocate the decompression state. The use of Z_FINISH
|
||
|
is never required, but can be used to inform inflate that a faster routine
|
||
|
may be used for the single inflate() call.
|
||
|
|
||
|
If a preset dictionary is needed at this point (see inflateSetDictionary
|
||
|
below), inflate sets strm-adler to the adler32 checksum of the
|
||
|
dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise
|
||
|
it sets strm->adler to the adler32 checksum of all output produced
|
||
|
so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or
|
||
|
an error code as described below. At the end of the stream, inflate()
|
||
|
checks that its computed adler32 checksum is equal to that saved by the
|
||
|
compressor and returns Z_STREAM_END only if the checksum is correct.
|
||
|
|
||
|
inflate() returns Z_OK if some progress has been made (more input processed
|
||
|
or more output produced), Z_STREAM_END if the end of the compressed data has
|
||
|
been reached and all uncompressed output has been produced, Z_NEED_DICT if a
|
||
|
preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
|
||
|
corrupted (input stream not conforming to the zlib format or incorrect
|
||
|
adler32 checksum), Z_STREAM_ERROR if the stream structure was inconsistent
|
||
|
(for example if next_in or next_out was NULL), Z_MEM_ERROR if there was not
|
||
|
enough memory, Z_BUF_ERROR if no progress is possible or if there was not
|
||
|
enough room in the output buffer when Z_FINISH is used. In the Z_DATA_ERROR
|
||
|
case, the application may then call inflateSync to look for a good
|
||
|
compression block.
|
||
|
*/
|
||
|
|
||
|
|
||
|
ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
|
||
|
/*
|
||
|
All dynamically allocated data structures for this stream are freed.
|
||
|
This function discards any unprocessed input and does not flush any
|
||
|
pending output.
|
||
|
|
||
|
inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
|
||
|
was inconsistent. In the error case, msg may be set but then points to a
|
||
|
static string (which must not be deallocated).
|
||
|
*/
|
||
|
|
||
|
/* Advanced functions */
|
||
|
|
||
|
/*
|
||
|
The following functions are needed only in some special applications.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
|
||
|
int level,
|
||
|
int method,
|
||
|
int windowBits,
|
||
|
int memLevel,
|
||
|
int strategy));
|
||
|
|
||
|
This is another version of deflateInit with more compression options. The
|
||
|
fields next_in, zalloc, zfree and opaque must be initialized before by
|
||
|
the caller.
|
||
|
|
||
|
The method parameter is the compression method. It must be Z_DEFLATED in
|
||
|
this version of the library.
|
||
|
|
||
|
The windowBits parameter is the base two logarithm of the window size
|
||
|
(the size of the history buffer). It should be in the range 8..15 for this
|
||
|
version of the library. Larger values of this parameter result in better
|
||
|
compression at the expense of memory usage. The default value is 15 if
|
||
|
deflateInit is used instead.
|
||
|
|
||
|
The memLevel parameter specifies how much memory should be allocated
|
||
|
for the internal compression state. memLevel=1 uses minimum memory but
|
||
|
is slow and reduces compression ratio; memLevel=9 uses maximum memory
|
||
|
for optimal speed. The default value is 8. See zconf.h for total memory
|
||
|
usage as a function of windowBits and memLevel.
|
||
|
|
||
|
The strategy parameter is used to tune the compression algorithm. Use the
|
||
|
value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
|
||
|
filter (or predictor), or Z_HUFFMAN_ONLY to force Huffman encoding only (no
|
||
|
string match). Filtered data consists mostly of small values with a
|
||
|
somewhat random distribution. In this case, the compression algorithm is
|
||
|
tuned to compress them better. The effect of Z_FILTERED is to force more
|
||
|
Huffman coding and less string matching; it is somewhat intermediate
|
||
|
between Z_DEFAULT and Z_HUFFMAN_ONLY. The strategy parameter only affects
|
||
|
the compression ratio but not the correctness of the compressed output even
|
||
|
if it is not set appropriately.
|
||
|
|
||
|
deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
|
||
|
memory, Z_STREAM_ERROR if a parameter is invalid (such as an invalid
|
||
|
method). msg is set to null if there is no error message. deflateInit2 does
|
||
|
not perform any compression: this will be done by deflate().
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
|
||
|
const Bytef *dictionary,
|
||
|
uInt dictLength));
|
||
|
/*
|
||
|
Initializes the compression dictionary from the given byte sequence
|
||
|
without producing any compressed output. This function must be called
|
||
|
immediately after deflateInit, deflateInit2 or deflateReset, before any
|
||
|
call of deflate. The compressor and decompressor must use exactly the same
|
||
|
dictionary (see inflateSetDictionary).
|
||
|
|
||
|
The dictionary should consist of strings (byte sequences) that are likely
|
||
|
to be encountered later in the data to be compressed, with the most commonly
|
||
|
used strings preferably put towards the end of the dictionary. Using a
|
||
|
dictionary is most useful when the data to be compressed is short and can be
|
||
|
predicted with good accuracy; the data can then be compressed better than
|
||
|
with the default empty dictionary.
|
||
|
|
||
|
Depending on the size of the compression data structures selected by
|
||
|
deflateInit or deflateInit2, a part of the dictionary may in effect be
|
||
|
discarded, for example if the dictionary is larger than the window size in
|
||
|
deflate or deflate2. Thus the strings most likely to be useful should be
|
||
|
put at the end of the dictionary, not at the front.
|
||
|
|
||
|
Upon return of this function, strm->adler is set to the Adler32 value
|
||
|
of the dictionary; the decompressor may later use this value to determine
|
||
|
which dictionary has been used by the compressor. (The Adler32 value
|
||
|
applies to the whole dictionary even if only a subset of the dictionary is
|
||
|
actually used by the compressor.)
|
||
|
|
||
|
deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
|
||
|
parameter is invalid (such as NULL dictionary) or the stream state is
|
||
|
inconsistent (for example if deflate has already been called for this stream
|
||
|
or if the compression method is bsort). deflateSetDictionary does not
|
||
|
perform any compression: this will be done by deflate().
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
|
||
|
z_streamp source));
|
||
|
/*
|
||
|
Sets the destination stream as a complete copy of the source stream.
|
||
|
|
||
|
This function can be useful when several compression strategies will be
|
||
|
tried, for example when there are several ways of pre-processing the input
|
||
|
data with a filter. The streams that will be discarded should then be freed
|
||
|
by calling deflateEnd. Note that deflateCopy duplicates the internal
|
||
|
compression state which can be quite large, so this strategy is slow and
|
||
|
can consume lots of memory.
|
||
|
|
||
|
deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
|
||
|
enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
|
||
|
(such as zalloc being NULL). msg is left unchanged in both source and
|
||
|
destination.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm));
|
||
|
/*
|
||
|
This function is equivalent to deflateEnd followed by deflateInit,
|
||
|
but does not free and reallocate all the internal compression state.
|
||
|
The stream will keep the same compression level and any other attributes
|
||
|
that may have been set by deflateInit2.
|
||
|
|
||
|
deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
|
||
|
stream state was inconsistent (such as zalloc or state being NULL).
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
|
||
|
int level,
|
||
|
int strategy));
|
||
|
/*
|
||
|
Dynamically update the compression level and compression strategy. The
|
||
|
interpretation of level and strategy is as in deflateInit2. This can be
|
||
|
used to switch between compression and straight copy of the input data, or
|
||
|
to switch to a different kind of input data requiring a different
|
||
|
strategy. If the compression level is changed, the input available so far
|
||
|
is compressed with the old level (and may be flushed); the new level will
|
||
|
take effect only at the next call of deflate().
|
||
|
|
||
|
Before the call of deflateParams, the stream state must be set as for
|
||
|
a call of deflate(), since the currently available input may have to
|
||
|
be compressed and flushed. In particular, strm->avail_out must be non-zero.
|
||
|
|
||
|
deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source
|
||
|
stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR
|
||
|
if strm->avail_out was zero.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
|
||
|
int windowBits));
|
||
|
|
||
|
This is another version of inflateInit with an extra parameter. The
|
||
|
fields next_in, avail_in, zalloc, zfree and opaque must be initialized
|
||
|
before by the caller.
|
||
|
|
||
|
The windowBits parameter is the base two logarithm of the maximum window
|
||
|
size (the size of the history buffer). It should be in the range 8..15 for
|
||
|
this version of the library. The default value is 15 if inflateInit is used
|
||
|
instead. If a compressed stream with a larger window size is given as
|
||
|
input, inflate() will return with the error code Z_DATA_ERROR instead of
|
||
|
trying to allocate a larger window.
|
||
|
|
||
|
inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
|
||
|
memory, Z_STREAM_ERROR if a parameter is invalid (such as a negative
|
||
|
memLevel). msg is set to null if there is no error message. inflateInit2
|
||
|
does not perform any decompression apart from reading the zlib header if
|
||
|
present: this will be done by inflate(). (So next_in and avail_in may be
|
||
|
modified, but next_out and avail_out are unchanged.)
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
|
||
|
const Bytef *dictionary,
|
||
|
uInt dictLength));
|
||
|
/*
|
||
|
Initializes the decompression dictionary from the given uncompressed byte
|
||
|
sequence. This function must be called immediately after a call of inflate
|
||
|
if this call returned Z_NEED_DICT. The dictionary chosen by the compressor
|
||
|
can be determined from the Adler32 value returned by this call of
|
||
|
inflate. The compressor and decompressor must use exactly the same
|
||
|
dictionary (see deflateSetDictionary).
|
||
|
|
||
|
inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
|
||
|
parameter is invalid (such as NULL dictionary) or the stream state is
|
||
|
inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
|
||
|
expected one (incorrect Adler32 value). inflateSetDictionary does not
|
||
|
perform any decompression: this will be done by subsequent calls of
|
||
|
inflate().
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
|
||
|
/*
|
||
|
Skips invalid compressed data until a full flush point (see above the
|
||
|
description of deflate with Z_FULL_FLUSH) can be found, or until all
|
||
|
available input is skipped. No output is provided.
|
||
|
|
||
|
inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR
|
||
|
if no more input was provided, Z_DATA_ERROR if no flush point has been found,
|
||
|
or Z_STREAM_ERROR if the stream structure was inconsistent. In the success
|
||
|
case, the application may save the current current value of total_in which
|
||
|
indicates where valid compressed data was found. In the error case, the
|
||
|
application may repeatedly call inflateSync, providing more input each time,
|
||
|
until success or end of the input data.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm));
|
||
|
/*
|
||
|
This function is equivalent to inflateEnd followed by inflateInit,
|
||
|
but does not free and reallocate all the internal decompression state.
|
||
|
The stream will keep attributes that may have been set by inflateInit2.
|
||
|
|
||
|
inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
|
||
|
stream state was inconsistent (such as zalloc or state being NULL).
|
||
|
*/
|
||
|
|
||
|
|
||
|
/* utility functions */
|
||
|
|
||
|
/*
|
||
|
The following utility functions are implemented on top of the
|
||
|
basic stream-oriented functions. To simplify the interface, some
|
||
|
default options are assumed (compression level and memory usage,
|
||
|
standard memory allocation functions). The source code of these
|
||
|
utility functions can easily be modified if you need special options.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen,
|
||
|
const Bytef *source, uLong sourceLen));
|
||
|
/*
|
||
|
Compresses the source buffer into the destination buffer. sourceLen is
|
||
|
the byte length of the source buffer. Upon entry, destLen is the total
|
||
|
size of the destination buffer, which must be at least 0.1% larger than
|
||
|
sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the
|
||
|
compressed buffer.
|
||
|
This function can be used to compress a whole file at once if the
|
||
|
input file is mmap'ed.
|
||
|
compress returns Z_OK if success, Z_MEM_ERROR if there was not
|
||
|
enough memory, Z_BUF_ERROR if there was not enough room in the output
|
||
|
buffer.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen,
|
||
|
const Bytef *source, uLong sourceLen,
|
||
|
int level));
|
||
|
/*
|
||
|
Compresses the source buffer into the destination buffer. The level
|
||
|
parameter has the same meaning as in deflateInit. sourceLen is the byte
|
||
|
length of the source buffer. Upon entry, destLen is the total size of the
|
||
|
destination buffer, which must be at least 0.1% larger than sourceLen plus
|
||
|
12 bytes. Upon exit, destLen is the actual size of the compressed buffer.
|
||
|
|
||
|
compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
|
||
|
memory, Z_BUF_ERROR if there was not enough room in the output buffer,
|
||
|
Z_STREAM_ERROR if the level parameter is invalid.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
|
||
|
const Bytef *source, uLong sourceLen));
|
||
|
/*
|
||
|
Decompresses the source buffer into the destination buffer. sourceLen is
|
||
|
the byte length of the source buffer. Upon entry, destLen is the total
|
||
|
size of the destination buffer, which must be large enough to hold the
|
||
|
entire uncompressed data. (The size of the uncompressed data must have
|
||
|
been saved previously by the compressor and transmitted to the decompressor
|
||
|
by some mechanism outside the scope of this compression library.)
|
||
|
Upon exit, destLen is the actual size of the compressed buffer.
|
||
|
This function can be used to decompress a whole file at once if the
|
||
|
input file is mmap'ed.
|
||
|
|
||
|
uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
|
||
|
enough memory, Z_BUF_ERROR if there was not enough room in the output
|
||
|
buffer, or Z_DATA_ERROR if the input data was corrupted.
|
||
|
*/
|
||
|
|
||
|
|
||
|
typedef voidp gzFile;
|
||
|
|
||
|
ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
|
||
|
/*
|
||
|
Opens a gzip (.gz) file for reading or writing. The mode parameter
|
||
|
is as in fopen ("rb" or "wb") but can also include a compression level
|
||
|
("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for
|
||
|
Huffman only compression as in "wb1h". (See the description
|
||
|
of deflateInit2 for more information about the strategy parameter.)
|
||
|
|
||
|
gzopen can be used to read a file which is not in gzip format; in this
|
||
|
case gzread will directly read from the file without decompression.
|
||
|
|
||
|
gzopen returns NULL if the file could not be opened or if there was
|
||
|
insufficient memory to allocate the (de)compression state; errno
|
||
|
can be checked to distinguish the two cases (if errno is zero, the
|
||
|
zlib error is Z_MEM_ERROR). */
|
||
|
|
||
|
ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
|
||
|
/*
|
||
|
gzdopen() associates a gzFile with the file descriptor fd. File
|
||
|
descriptors are obtained from calls like open, dup, creat, pipe or
|
||
|
fileno (in the file has been previously opened with fopen).
|
||
|
The mode parameter is as in gzopen.
|
||
|
The next call of gzclose on the returned gzFile will also close the
|
||
|
file descriptor fd, just like fclose(fdopen(fd), mode) closes the file
|
||
|
descriptor fd. If you want to keep fd open, use gzdopen(dup(fd), mode).
|
||
|
gzdopen returns NULL if there was insufficient memory to allocate
|
||
|
the (de)compression state.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
|
||
|
/*
|
||
|
Dynamically update the compression level or strategy. See the description
|
||
|
of deflateInit2 for the meaning of these parameters.
|
||
|
gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not
|
||
|
opened for writing.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
|
||
|
/*
|
||
|
Reads the given number of uncompressed bytes from the compressed file.
|
||
|
If the input file was not in gzip format, gzread copies the given number
|
||
|
of bytes into the buffer.
|
||
|
gzread returns the number of uncompressed bytes actually read (0 for
|
||
|
end of file, -1 for error). */
|
||
|
|
||
|
ZEXTERN int ZEXPORT gzwrite OF((gzFile file,
|
||
|
const voidp buf, unsigned len));
|
||
|
/*
|
||
|
Writes the given number of uncompressed bytes into the compressed file.
|
||
|
gzwrite returns the number of uncompressed bytes actually written
|
||
|
(0 in case of error).
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORTVA gzprintf OF((gzFile file, const char *format, ...));
|
||
|
/*
|
||
|
Converts, formats, and writes the args to the compressed file under
|
||
|
control of the format string, as in fprintf. gzprintf returns the number of
|
||
|
uncompressed bytes actually written (0 in case of error).
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
|
||
|
/*
|
||
|
Writes the given null-terminated string to the compressed file, excluding
|
||
|
the terminating null character.
|
||
|
gzputs returns the number of characters written, or -1 in case of error.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len));
|
||
|
/*
|
||
|
Reads bytes from the compressed file until len-1 characters are read, or
|
||
|
a newline character is read and transferred to buf, or an end-of-file
|
||
|
condition is encountered. The string is then terminated with a null
|
||
|
character.
|
||
|
gzgets returns buf, or Z_NULL in case of error.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c));
|
||
|
/*
|
||
|
Writes c, converted to an unsigned char, into the compressed file.
|
||
|
gzputc returns the value that was written, or -1 in case of error.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
|
||
|
/*
|
||
|
Reads one byte from the compressed file. gzgetc returns this byte
|
||
|
or -1 in case of end of file or error.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
|
||
|
/*
|
||
|
Flushes all pending output into the compressed file. The parameter
|
||
|
flush is as in the deflate() function. The return value is the zlib
|
||
|
error number (see function gzerror below). gzflush returns Z_OK if
|
||
|
the flush parameter is Z_FINISH and all output could be flushed.
|
||
|
gzflush should be called only when strictly necessary because it can
|
||
|
degrade compression.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
|
||
|
z_off_t offset, int whence));
|
||
|
/*
|
||
|
Sets the starting position for the next gzread or gzwrite on the
|
||
|
given compressed file. The offset represents a number of bytes in the
|
||
|
uncompressed data stream. The whence parameter is defined as in lseek(2);
|
||
|
the value SEEK_END is not supported.
|
||
|
If the file is opened for reading, this function is emulated but can be
|
||
|
extremely slow. If the file is opened for writing, only forward seeks are
|
||
|
supported; gzseek then compresses a sequence of zeroes up to the new
|
||
|
starting position.
|
||
|
|
||
|
gzseek returns the resulting offset location as measured in bytes from
|
||
|
the beginning of the uncompressed stream, or -1 in case of error, in
|
||
|
particular if the file is opened for writing and the new starting position
|
||
|
would be before the current position.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT gzrewind OF((gzFile file));
|
||
|
/*
|
||
|
Rewinds the given file. This function is supported only for reading.
|
||
|
|
||
|
gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET)
|
||
|
*/
|
||
|
|
||
|
ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file));
|
||
|
/*
|
||
|
Returns the starting position for the next gzread or gzwrite on the
|
||
|
given compressed file. This position represents a number of bytes in the
|
||
|
uncompressed data stream.
|
||
|
|
||
|
gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR)
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT gzeof OF((gzFile file));
|
||
|
/*
|
||
|
Returns 1 when EOF has previously been detected reading the given
|
||
|
input stream, otherwise zero.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN int ZEXPORT gzclose OF((gzFile file));
|
||
|
/*
|
||
|
Flushes all pending output if necessary, closes the compressed file
|
||
|
and deallocates all the (de)compression state. The return value is the zlib
|
||
|
error number (see function gzerror below).
|
||
|
*/
|
||
|
|
||
|
ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum));
|
||
|
/*
|
||
|
Returns the error message for the last error which occurred on the
|
||
|
given compressed file. errnum is set to zlib error number. If an
|
||
|
error occurred in the file system and not in the compression library,
|
||
|
errnum is set to Z_ERRNO and the application may consult errno
|
||
|
to get the exact error code.
|
||
|
*/
|
||
|
|
||
|
/* checksum functions */
|
||
|
|
||
|
/*
|
||
|
These functions are not related to compression but are exported
|
||
|
anyway because they might be useful in applications using the
|
||
|
compression library.
|
||
|
*/
|
||
|
|
||
|
ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
|
||
|
|
||
|
/*
|
||
|
Update a running Adler-32 checksum with the bytes buf[0..len-1] and
|
||
|
return the updated checksum. If buf is NULL, this function returns
|
||
|
the required initial value for the checksum.
|
||
|
An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
|
||
|
much faster. Usage example:
|
||
|
|
||
|
uLong adler = adler32(0L, Z_NULL, 0);
|
||
|
|
||
|
while (read_buffer(buffer, length) != EOF) {
|
||
|
adler = adler32(adler, buffer, length);
|
||
|
}
|
||
|
if (adler != original_adler) error();
|
||
|
*/
|
||
|
|
||
|
ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len));
|
||
|
/*
|
||
|
Update a running crc with the bytes buf[0..len-1] and return the updated
|
||
|
crc. If buf is NULL, this function returns the required initial value
|
||
|
for the crc. Pre- and post-conditioning (one's complement) is performed
|
||
|
within this function so it shouldn't be done by the application.
|
||
|
Usage example:
|
||
|
|
||
|
uLong crc = crc32(0L, Z_NULL, 0);
|
||
|
|
||
|
while (read_buffer(buffer, length) != EOF) {
|
||
|
crc = crc32(crc, buffer, length);
|
||
|
}
|
||
|
if (crc != original_crc) error();
|
||
|
*/
|
||
|
|
||
|
|
||
|
/* various hacks, don't look :) */
|
||
|
|
||
|
/* deflateInit and inflateInit are macros to allow checking the zlib version
|
||
|
* and the compiler's view of z_stream:
|
||
|
*/
|
||
|
ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level,
|
||
|
const char *version, int stream_size));
|
||
|
ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm,
|
||
|
const char *version, int stream_size));
|
||
|
ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method,
|
||
|
int windowBits, int memLevel,
|
||
|
int strategy, const char *version,
|
||
|
int stream_size));
|
||
|
ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits,
|
||
|
const char *version, int stream_size));
|
||
|
#define deflateInit(strm, level) \
|
||
|
deflateInit_((strm), (level), ZLIB_VERSION, sizeof(z_stream))
|
||
|
#define inflateInit(strm) \
|
||
|
inflateInit_((strm), ZLIB_VERSION, sizeof(z_stream))
|
||
|
#define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
|
||
|
deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
|
||
|
(strategy), ZLIB_VERSION, sizeof(z_stream))
|
||
|
#define inflateInit2(strm, windowBits) \
|
||
|
inflateInit2_((strm), (windowBits), ZLIB_VERSION, sizeof(z_stream))
|
||
|
|
||
|
|
||
|
#if !defined(_Z_UTIL_H) && !defined(NO_DUMMY_DECL)
|
||
|
struct internal_state {int dummy;}; /* hack for buggy compilers */
|
||
|
#endif
|
||
|
|
||
|
ZEXTERN const char * ZEXPORT zError OF((int err));
|
||
|
ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp z));
|
||
|
ZEXTERN const uLongf * ZEXPORT get_crc_table OF((void));
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif /* _ZLIB_H */
|