Serious-Engine/Sources/Engine/Math/Geometry.cpp

306 lines
9.5 KiB
C++
Raw Normal View History

2016-03-11 14:57:17 +01:00
/* Copyright (c) 2002-2012 Croteam Ltd. All rights reserved. */
#include "Engine/StdH.h"
2016-03-11 14:57:17 +01:00
#include <Engine/Math/Geometry.h>
#include <Engine/Math/Functions.h>
/////////////////////////////////////////////////////////////////////
//
// General functions
//
/////////////////////////////////////////////////////////////////////
/*
* Calculate rotation matrix from angles in 3D.
*/
/*void operator^=(FLOATmatrix3D &t3dRotation, const ANGLE3D &a3dAngles)
{
MakeRotationMatrix(t3dRotation, a3dAngles);
}
*/
void MakeRotationMatrix(FLOATmatrix3D &t3dRotation, const ANGLE3D &a3dAngles)
{
FLOAT fSinH = Sin(a3dAngles(1)); // heading
FLOAT fCosH = Cos(a3dAngles(1));
FLOAT fSinP = Sin(a3dAngles(2)); // pitch
FLOAT fCosP = Cos(a3dAngles(2));
FLOAT fSinB = Sin(a3dAngles(3)); // banking
FLOAT fCosB = Cos(a3dAngles(3));
t3dRotation(1,1) = fCosH*fCosB+fSinP*fSinH*fSinB;
t3dRotation(1,2) = fSinP*fSinH*fCosB-fCosH*fSinB;
t3dRotation(1,3) = fCosP*fSinH;
t3dRotation(2,1) = fCosP*fSinB;
t3dRotation(2,2) = fCosP*fCosB;
t3dRotation(2,3) = -fSinP;
t3dRotation(3,1) = fSinP*fCosH*fSinB-fSinH*fCosB;
t3dRotation(3,2) = fSinP*fCosH*fCosB+fSinH*fSinB;
t3dRotation(3,3) = fCosP*fCosH;
}
void MakeRotationMatrixFast(FLOATmatrix3D &t3dRotation, const ANGLE3D &a3dAngles)
{
FLOAT fSinH = SinFast(a3dAngles(1)); // heading
FLOAT fCosH = CosFast(a3dAngles(1));
FLOAT fSinP = SinFast(a3dAngles(2)); // pitch
FLOAT fCosP = CosFast(a3dAngles(2));
FLOAT fSinB = SinFast(a3dAngles(3)); // banking
FLOAT fCosB = CosFast(a3dAngles(3));
t3dRotation(1,1) = fCosH*fCosB+fSinP*fSinH*fSinB;
t3dRotation(1,2) = fSinP*fSinH*fCosB-fCosH*fSinB;
t3dRotation(1,3) = fCosP*fSinH;
t3dRotation(2,1) = fCosP*fSinB;
t3dRotation(2,2) = fCosP*fCosB;
t3dRotation(2,3) = -fSinP;
t3dRotation(3,1) = fSinP*fCosH*fSinB-fSinH*fCosB;
t3dRotation(3,2) = fSinP*fCosH*fCosB+fSinH*fSinB;
t3dRotation(3,3) = fCosP*fCosH;
}
/*
* Calculate inverse rotation matrix from angles in 3D.
*/
/*void operator!=(FLOATmatrix3D &t3dRotation, const ANGLE3D &a3dAngles)
{
MakeInverseRotationMatrix(t3dRotation, a3dAngles);
}
*/
void MakeInverseRotationMatrix(FLOATmatrix3D &t3dRotation, const ANGLE3D &a3dAngles)
{
FLOAT fSinH = Sin(a3dAngles(1)); // heading
FLOAT fCosH = Cos(a3dAngles(1));
FLOAT fSinP = Sin(a3dAngles(2)); // pitch
FLOAT fCosP = Cos(a3dAngles(2));
FLOAT fSinB = Sin(a3dAngles(3)); // banking
FLOAT fCosB = Cos(a3dAngles(3));
// to make inverse of rotation matrix, we only need to transpose it
t3dRotation(1,1) = fCosH*fCosB+fSinP*fSinH*fSinB;
t3dRotation(2,1) = fSinP*fSinH*fCosB-fCosH*fSinB;
t3dRotation(3,1) = fCosP*fSinH;
t3dRotation(1,2) = fCosP*fSinB;
t3dRotation(2,2) = fCosP*fCosB;
t3dRotation(3,2) = -fSinP;
t3dRotation(1,3) = fSinP*fCosH*fSinB-fSinH*fCosB;
t3dRotation(2,3) = fSinP*fCosH*fCosB+fSinH*fSinB;
t3dRotation(3,3) = fCosP*fCosH;
}
void MakeInverseRotationMatrixFast(FLOATmatrix3D &t3dRotation, const ANGLE3D &a3dAngles)
{
FLOAT fSinH = SinFast(a3dAngles(1)); // heading
FLOAT fCosH = CosFast(a3dAngles(1));
FLOAT fSinP = SinFast(a3dAngles(2)); // pitch
FLOAT fCosP = CosFast(a3dAngles(2));
FLOAT fSinB = SinFast(a3dAngles(3)); // banking
FLOAT fCosB = CosFast(a3dAngles(3));
// to make inverse of rotation matrix, we only need to transpose it
t3dRotation(1,1) = fCosH*fCosB+fSinP*fSinH*fSinB;
t3dRotation(2,1) = fSinP*fSinH*fCosB-fCosH*fSinB;
t3dRotation(3,1) = fCosP*fSinH;
t3dRotation(1,2) = fCosP*fSinB;
t3dRotation(2,2) = fCosP*fCosB;
t3dRotation(3,2) = -fSinP;
t3dRotation(1,3) = fSinP*fCosH*fSinB-fSinH*fCosB;
t3dRotation(2,3) = fSinP*fCosH*fCosB+fSinH*fSinB;
t3dRotation(3,3) = fCosP*fCosH;
}
/*
* Decompose rotation matrix into angles in 3D.
*/
// NOTE: for derivation of the algorithm, see mathlib.doc
void DecomposeRotationMatrixNoSnap(ANGLE3D &a3dAngles, const FLOATmatrix3D &t3dRotation)
{
ANGLE &h=a3dAngles(1); // heading
ANGLE &p=a3dAngles(2); // pitch
ANGLE &b=a3dAngles(3); // banking
FLOAT a; // temporary
// calculate pitch
FLOAT f23 = t3dRotation(2,3);
p = ASin(-f23);
a = Sqrt(1.0f-f23*f23);
// if pitch makes banking beeing the same as heading
if (a<0.001) {
// we choose to have banking of 0
b = 0;
// and calculate heading for that
ASSERT(Abs(t3dRotation(2,3))>0.5); // must be around 1, what is far from 0
h = ATan2(t3dRotation(1,2)/(-t3dRotation(2,3)), t3dRotation(1,1)); // no division by 0
// otherwise
} else {
// calculate banking and heading normally
b = ATan2(t3dRotation(2,1), t3dRotation(2,2));
h = ATan2(t3dRotation(1,3), t3dRotation(3,3));
}
}
void DecomposeRotationMatrix(ANGLE3D &a3dAngles, const FLOATmatrix3D &t3dRotation)
{
// decompose the matrix without snapping
DecomposeRotationMatrixNoSnap(a3dAngles, t3dRotation);
// snap angles to compensate for errors when converting to and from matrix notation
Snap(a3dAngles(1), ANGLE_SNAP);
Snap(a3dAngles(2), ANGLE_SNAP);
Snap(a3dAngles(3), ANGLE_SNAP);
}
/*void operator^=(ANGLE3D &a3dAngles, const FLOATmatrix3D &t3dRotation) {
DecomposeRotationMatrix(a3dAngles, t3dRotation);
}
*/
/*
* Create direction vector from angles in 3D (ignoring banking).
*/
void AnglesToDirectionVector(const ANGLE3D &a3dAngles, FLOAT3D &vDirection)
{
// find the rotation matrix from the angles
FLOATmatrix3D mDirection;
MakeRotationMatrix(mDirection, a3dAngles);
// rotate a front oriented vector by the matrix
vDirection = FLOAT3D(0.0f, 0.0f, -1.0f)*mDirection;
}
/*
* Create angles in 3D from direction vector(ignoring banking).
*/
void DirectionVectorToAnglesNoSnap(const FLOAT3D &vDirection, ANGLE3D &a3dAngles)
{
// now calculate the angles
ANGLE &h = a3dAngles(1);
ANGLE &p = a3dAngles(2);
ANGLE &b = a3dAngles(3);
const FLOAT &x = vDirection(1);
const FLOAT &y = vDirection(2);
const FLOAT &z = vDirection(3);
// banking is always irrelevant
b = 0;
// calculate pitch
p = ASin(y);
// if y is near +1 or -1
if (y>0.99 || y<-0.99) {
// heading is irrelevant
h = 0;
// otherwise
} else {
// calculate heading
h = ATan2(-x, -z);
}
}
void DirectionVectorToAngles(const FLOAT3D &vDirection, ANGLE3D &a3dAngles)
{
DirectionVectorToAnglesNoSnap(vDirection, a3dAngles);
// snap angles to compensate for errors when converting to and from vector notation
Snap(a3dAngles(1), ANGLE_SNAP);
Snap(a3dAngles(2), ANGLE_SNAP);
Snap(a3dAngles(3), ANGLE_SNAP);
}
/* Create angles in 3D from up vector (ignoring objects relative heading).
(up vector must be normalized!)*/
void UpVectorToAngles(const FLOAT3D &vY, ANGLE3D &a3dAngles)
{
// create any front vector
FLOAT3D vZ;
if (Abs(vY(2))>0.5f) {
vZ = FLOAT3D(1,0,0)*vY;
} else {
vZ = FLOAT3D(0,1,0)*vY;
}
vZ.Normalize();
// side vector is cross product
FLOAT3D vX = vY*vZ;
vX.Normalize();
// create the rotation matrix
FLOATmatrix3D m;
m(1,1) = vX(1); m(1,2) = vY(1); m(1,3) = vZ(1);
m(2,1) = vX(2); m(2,2) = vY(2); m(2,3) = vZ(2);
m(3,1) = vX(3); m(3,2) = vY(3); m(3,3) = vZ(3);
// decompose the matrix without snapping
DecomposeRotationMatrixNoSnap(a3dAngles, m);
}
/*
* Calculate rotation matrix from angles in 3D.
*/
void operator^=(DOUBLEmatrix3D &t3dRotation, const ANGLE3D &a3dAngles) {
const ANGLE &h=a3dAngles(1); // heading
const ANGLE &p=a3dAngles(2); // pitch
const ANGLE &b=a3dAngles(3); // banking
t3dRotation(1,1) = Cos(h)*Cos(b)+Sin(p)*Sin(h)*Sin(b);
t3dRotation(1,2) = Sin(p)*Sin(h)*Cos(b)-Cos(h)*Sin(b);
t3dRotation(1,3) = Cos(p)*Sin(h);
t3dRotation(2,1) = Cos(p)*Sin(b);
t3dRotation(2,2) = Cos(p)*Cos(b);
t3dRotation(2,3) = -Sin(p);
t3dRotation(3,1) = Sin(p)*Cos(h)*Sin(b)-Sin(h)*Cos(b);
t3dRotation(3,2) = Sin(p)*Cos(h)*Cos(b)+Sin(h)*Sin(b);
t3dRotation(3,3) = Cos(p)*Cos(h);
}
/*
* Calculate inverse rotation matrix from angles in 3D.
*/
void operator!=(DOUBLEmatrix3D &t3dRotation, const ANGLE3D &a3dAngles) {
const ANGLE &h=a3dAngles(1); // heading
const ANGLE &p=a3dAngles(2); // pitch
const ANGLE &b=a3dAngles(3); // banking
// to make inverse of rotation matrix, we only need to transpose it
t3dRotation(1,1) = Cos(h)*Cos(b)+Sin(p)*Sin(h)*Sin(b);
t3dRotation(2,1) = Sin(p)*Sin(h)*Cos(b)-Cos(h)*Sin(b);
t3dRotation(3,1) = Cos(p)*Sin(h);
t3dRotation(1,2) = Cos(p)*Sin(b);
t3dRotation(2,2) = Cos(p)*Cos(b);
t3dRotation(3,2) = -Sin(p);
t3dRotation(1,3) = Sin(p)*Cos(h)*Sin(b)-Sin(h)*Cos(b);
t3dRotation(2,3) = Sin(p)*Cos(h)*Cos(b)+Sin(h)*Sin(b);
t3dRotation(3,3) = Cos(p)*Cos(h);
}
/*
* Decompose rotation matrix into angles in 3D.
*/
// NOTE: for derivation of the algorithm, see mathlib.doc
void operator^=(ANGLE3D &a3dAngles, const DOUBLEmatrix3D &t3dRotation) {
ANGLE &h=a3dAngles(1); // heading
ANGLE &p=a3dAngles(2); // pitch
ANGLE &b=a3dAngles(3); // banking
DOUBLE a; // temporary
// calculate pitch
p = ASin(-t3dRotation(2,3));
a = sqrt(1-t3dRotation(2,3)*t3dRotation(2,3));
// if pitch makes banking beeing the same as heading
if (a<0.0001) {
// we choose to have banking of 0
b = 0;
// and calculate heading for that
ASSERT(Abs(t3dRotation(2,3))>0.5); // must be around 1, what is far from 0
h = ATan2(t3dRotation(1,2)/(-t3dRotation(2,3)), t3dRotation(1,1)); // no division by 0
// otherwise
} else {
// calculate banking and heading normally
b = ATan2(t3dRotation(2,1)/a, t3dRotation(2,2)/a);
h = ATan2(t3dRotation(1,3)/a, t3dRotation(3,3)/a);
}
// snap angles to compensate for errors when converting to and from matrix notation
Snap(h, ANGLE_SNAP);
Snap(p, ANGLE_SNAP);
Snap(b, ANGLE_SNAP);
}