mirror of
https://github.com/ptitSeb/Serious-Engine
synced 2025-01-28 05:00:57 +01:00
388 lines
11 KiB
C++
388 lines
11 KiB
C++
|
/* Copyright (c) 2002-2012 Croteam Ltd. All rights reserved. */
|
||
|
|
||
|
#include "stdh.h"
|
||
|
|
||
|
#include <Engine/Base/Timer.h>
|
||
|
#include <Engine/Base/Console.h>
|
||
|
#include <Engine/Base/Translation.h>
|
||
|
|
||
|
#include <Engine/Base/Registry.h>
|
||
|
#include <Engine/Base/Profiling.h>
|
||
|
#include <Engine/Base/ErrorReporting.h>
|
||
|
#include <Engine/Base/Statistics_Internal.h>
|
||
|
|
||
|
#include <Engine/Base/ListIterator.inl>
|
||
|
#include <Engine/Base/Priority.inl>
|
||
|
|
||
|
// Read the Pentium TimeStampCounter
|
||
|
static inline __int64 ReadTSC(void)
|
||
|
{
|
||
|
__int64 mmRet;
|
||
|
__asm {
|
||
|
rdtsc
|
||
|
mov dword ptr [mmRet+0],eax
|
||
|
mov dword ptr [mmRet+4],edx
|
||
|
}
|
||
|
return mmRet;
|
||
|
}
|
||
|
|
||
|
|
||
|
// link with Win-MultiMedia
|
||
|
#pragma comment(lib, "winmm.lib")
|
||
|
|
||
|
// current game time always valid for the currently active task
|
||
|
static _declspec(thread) TIME _CurrentTickTimer = 0.0f;
|
||
|
|
||
|
// CTimer implementation
|
||
|
|
||
|
// pointer to global timer object
|
||
|
CTimer *_pTimer = NULL;
|
||
|
|
||
|
const TIME CTimer::TickQuantum = TIME(1/20.0); // 20 ticks per second
|
||
|
|
||
|
/*
|
||
|
* Timer interrupt callback function.
|
||
|
*/
|
||
|
/*
|
||
|
NOTE:
|
||
|
This function is a bit more complicated than it could be, because
|
||
|
it has to deal with a feature in the windows multimedia timer that
|
||
|
is undesired here.
|
||
|
That is the fact that, if the timer function is stalled for a while,
|
||
|
because some other thread or itself took too much time, the timer function
|
||
|
is called more times to catch up with the hardware clock.
|
||
|
This can cause complete lockout if timer handlers constantly consume more
|
||
|
time than is available between two calls of timer function.
|
||
|
As a workaround, this function measures hardware time and refuses to call
|
||
|
the handlers if it is not on time.
|
||
|
|
||
|
In effect, if some timer handler starts spending too much time, the
|
||
|
handlers are called at lower frequency until the application (hopefully)
|
||
|
stabilizes.
|
||
|
|
||
|
When such a catch-up situation occurs, 'real time' timer still keeps
|
||
|
more or less up to date with the hardware time, but the timer handlers
|
||
|
skip some ticks. E.g. if timer handlers start spending twice more time
|
||
|
than is tick quantum, they get called approx. every two ticks.
|
||
|
|
||
|
EXTRA NOTE:
|
||
|
Had to disable that, because it didn't work well (caused jerking) on
|
||
|
Win95 osr2 with no patches installed!
|
||
|
*/
|
||
|
void CTimer_TimerFunc_internal(void)
|
||
|
{
|
||
|
// Access to stream operations might be invoked in timer handlers, but
|
||
|
// this is disabled for now. Should also synchronize access to list of
|
||
|
// streams and to group file before enabling that!
|
||
|
// CTSTREAM_BEGIN {
|
||
|
|
||
|
// increment the 'real time' timer
|
||
|
_pTimer->tm_RealTimeTimer += _pTimer->TickQuantum;
|
||
|
|
||
|
// get the current time for real and in ticks
|
||
|
CTimerValue tvTimeNow = _pTimer->GetHighPrecisionTimer();
|
||
|
TIME tmTickNow = _pTimer->tm_RealTimeTimer;
|
||
|
// calculate how long has passed since we have last been on time
|
||
|
TIME tmTimeDelay = (TIME)(tvTimeNow - _pTimer->tm_tvLastTimeOnTime).GetSeconds();
|
||
|
TIME tmTickDelay = (tmTickNow - _pTimer->tm_tmLastTickOnTime);
|
||
|
|
||
|
_sfStats.StartTimer(CStatForm::STI_TIMER);
|
||
|
// if we are keeping up to time (more or less)
|
||
|
// if (tmTimeDelay>=_pTimer->TickQuantum*0.9f) {
|
||
|
|
||
|
// for all hooked handlers
|
||
|
FOREACHINLIST(CTimerHandler, th_Node, _pTimer->tm_lhHooks, itth) {
|
||
|
// handle
|
||
|
itth->HandleTimer();
|
||
|
}
|
||
|
// }
|
||
|
_sfStats.StopTimer(CStatForm::STI_TIMER);
|
||
|
|
||
|
// remember that we have been on time now
|
||
|
_pTimer->tm_tvLastTimeOnTime = tvTimeNow;
|
||
|
_pTimer->tm_tmLastTickOnTime = tmTickNow;
|
||
|
|
||
|
// } CTSTREAM_END;
|
||
|
}
|
||
|
void __stdcall CTimer_TimerFunc(UINT uID, UINT uMsg, ULONG dwUser, ULONG dw1, ULONG dw2)
|
||
|
{
|
||
|
// access to the list of handlers must be locked
|
||
|
CTSingleLock slHooks(&_pTimer->tm_csHooks, TRUE);
|
||
|
// handle all timers
|
||
|
CTimer_TimerFunc_internal();
|
||
|
}
|
||
|
|
||
|
|
||
|
#pragma inline_depth()
|
||
|
|
||
|
#define MAX_MEASURE_TRIES 5
|
||
|
static INDEX _aiTries[MAX_MEASURE_TRIES];
|
||
|
|
||
|
// Get processor speed in Hertz
|
||
|
static __int64 GetCPUSpeedHz(void)
|
||
|
{
|
||
|
// get the frequency of the 'high' precision timer
|
||
|
__int64 llTimerFrequency;
|
||
|
BOOL bPerformanceCounterPresent = QueryPerformanceFrequency((LARGE_INTEGER*)&llTimerFrequency);
|
||
|
// fail if the performance counter is not available on this system
|
||
|
if( !bPerformanceCounterPresent) {
|
||
|
CPrintF( TRANS("PerformanceTimer is not available!\n"));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
INDEX iSpeed, iTry;
|
||
|
INDEX ctTotalFaults=0;
|
||
|
__int64 llTimeLast, llTimeNow;
|
||
|
__int64 llCPUBefore, llCPUAfter;
|
||
|
__int64 llTimeBefore, llTimeAfter;
|
||
|
__int64 llSpeedMeasured;
|
||
|
|
||
|
// try to measure 10 times
|
||
|
INDEX iSet=0;
|
||
|
for( ; iSet<10; iSet++)
|
||
|
{ // one time has several tries
|
||
|
for( iTry=0; iTry<MAX_MEASURE_TRIES; iTry++)
|
||
|
{ // wait the state change on the timer
|
||
|
QueryPerformanceCounter((LARGE_INTEGER*)&llTimeNow);
|
||
|
do {
|
||
|
llTimeLast = llTimeNow;
|
||
|
QueryPerformanceCounter((LARGE_INTEGER*)&llTimeNow);
|
||
|
} while( llTimeLast==llTimeNow);
|
||
|
// wait for some time, and count the CPU clocks passed
|
||
|
llCPUBefore = ReadTSC();
|
||
|
llTimeBefore = llTimeNow;
|
||
|
llTimeAfter = llTimeNow + llTimerFrequency/4;
|
||
|
do {
|
||
|
QueryPerformanceCounter((LARGE_INTEGER*)&llTimeNow);
|
||
|
} while( llTimeNow<llTimeAfter );
|
||
|
llCPUAfter = ReadTSC();
|
||
|
// calculate the CPU clock frequency from gathered data
|
||
|
llSpeedMeasured = (llCPUAfter-llCPUBefore)*llTimerFrequency / (llTimeNow-llTimeBefore);
|
||
|
_aiTries[iTry] = llSpeedMeasured/1000000;
|
||
|
}
|
||
|
// see if we had good measurement
|
||
|
INDEX ctFaults = 0;
|
||
|
iSpeed = _aiTries[0];
|
||
|
const INDEX iTolerance = iSpeed *1/100; // %1 tolerance should be enough
|
||
|
for( iTry=1; iTry<MAX_MEASURE_TRIES; iTry++) {
|
||
|
if( abs(iSpeed-_aiTries[iTry]) > iTolerance) ctFaults++;
|
||
|
}
|
||
|
// done if no faults
|
||
|
if( ctFaults==0) break;
|
||
|
Sleep(1000);
|
||
|
}
|
||
|
|
||
|
// fail if couldn't readout CPU speed
|
||
|
if( iSet==10) {
|
||
|
CPrintF( TRANS("PerformanceTimer is not vaild!\n"));
|
||
|
//return 1;
|
||
|
// NOTE: this function must never fail, or the engine will crash!
|
||
|
// if this failed, the speed will be read from registry (only happens on Win2k)
|
||
|
}
|
||
|
|
||
|
// keep readout speed and read speed from registry
|
||
|
const SLONG slSpeedRead = _aiTries[0];
|
||
|
SLONG slSpeedReg = 0;
|
||
|
BOOL bFoundInReg = REG_GetLong("HKEY_LOCAL_MACHINE\\HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0\\~MHz", (ULONG&)slSpeedReg);
|
||
|
|
||
|
// if not found in registry
|
||
|
if( !bFoundInReg) {
|
||
|
// use measured
|
||
|
CPrintF(TRANS(" CPU speed not found in registry, using calculated value\n\n"));
|
||
|
return (__int64)slSpeedRead*1000000;
|
||
|
// if found in registry
|
||
|
} else {
|
||
|
// if different than measured
|
||
|
const INDEX iTolerance = slSpeedRead *1/100; // %1 tolerance should be enough
|
||
|
if( abs(slSpeedRead-slSpeedReg) > iTolerance) {
|
||
|
// report warning and use registry value
|
||
|
CPrintF(TRANS(" WARNING: calculated CPU speed different than stored in registry!\n\n"));
|
||
|
return (__int64)slSpeedReg*1000000;
|
||
|
}
|
||
|
// use measured value
|
||
|
return (__int64)slSpeedRead*1000000;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Constructor.
|
||
|
*/
|
||
|
CTimer::CTimer(BOOL bInterrupt /*=TRUE*/)
|
||
|
{
|
||
|
tm_csHooks.cs_iIndex = 1000;
|
||
|
// set global pointer
|
||
|
ASSERT(_pTimer == NULL);
|
||
|
_pTimer = this;
|
||
|
tm_bInterrupt = bInterrupt;
|
||
|
|
||
|
{ // this part of code must be executed as precisely as possible
|
||
|
CSetPriority sp(REALTIME_PRIORITY_CLASS, THREAD_PRIORITY_TIME_CRITICAL);
|
||
|
tm_llCPUSpeedHZ = GetCPUSpeedHz();
|
||
|
tm_llPerformanceCounterFrequency = tm_llCPUSpeedHZ;
|
||
|
|
||
|
// measure profiling errors and set epsilon corrections
|
||
|
CProfileForm::CalibrateProfilingTimers();
|
||
|
}
|
||
|
|
||
|
// clear counters
|
||
|
_CurrentTickTimer = TIME(0);
|
||
|
tm_RealTimeTimer = TIME(0);
|
||
|
|
||
|
tm_tmLastTickOnTime = TIME(0);
|
||
|
tm_tvLastTimeOnTime = GetHighPrecisionTimer();
|
||
|
// disable lerping by default
|
||
|
tm_fLerpFactor = 1.0f;
|
||
|
tm_fLerpFactor2 = 1.0f;
|
||
|
|
||
|
// start interrupt (eventually)
|
||
|
if( tm_bInterrupt)
|
||
|
{
|
||
|
tm_TimerID = timeSetEvent(
|
||
|
ULONG(TickQuantum*1000.0f), // period value [ms]
|
||
|
0, // resolution (0==max. possible)
|
||
|
&CTimer_TimerFunc, // callback
|
||
|
0, // user
|
||
|
TIME_PERIODIC); // event type
|
||
|
|
||
|
// check that interrupt was properly started
|
||
|
if( tm_TimerID==NULL) FatalError(TRANS("Cannot initialize multimedia timer!"));
|
||
|
|
||
|
// make sure that timer interrupt is ticking
|
||
|
INDEX iTry=1;
|
||
|
for( ; iTry<=3; iTry++) {
|
||
|
const TIME tmTickBefore = GetRealTimeTick();
|
||
|
Sleep(1000* iTry*3 *TickQuantum);
|
||
|
const TIME tmTickAfter = GetRealTimeTick();
|
||
|
if( tmTickBefore!=tmTickAfter) break;
|
||
|
Sleep(1000*iTry);
|
||
|
}
|
||
|
// report fatal
|
||
|
if( iTry>3) FatalError(TRANS("Problem with initializing multimedia timer - please try again."));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Destructor.
|
||
|
*/
|
||
|
CTimer::~CTimer(void)
|
||
|
{
|
||
|
ASSERT(_pTimer == this);
|
||
|
|
||
|
// destroy timer
|
||
|
if (tm_bInterrupt) {
|
||
|
ASSERT(tm_TimerID!=NULL);
|
||
|
ULONG rval = timeKillEvent(tm_TimerID);
|
||
|
ASSERT(rval == TIMERR_NOERROR);
|
||
|
}
|
||
|
// check that all handlers have been removed
|
||
|
ASSERT(tm_lhHooks.IsEmpty());
|
||
|
|
||
|
// clear global pointer
|
||
|
_pTimer = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add a timer handler.
|
||
|
*/
|
||
|
void CTimer::AddHandler(CTimerHandler *pthNew)
|
||
|
{
|
||
|
// access to the list of handlers must be locked
|
||
|
CTSingleLock slHooks(&tm_csHooks, TRUE);
|
||
|
|
||
|
ASSERT(this!=NULL);
|
||
|
tm_lhHooks.AddTail(pthNew->th_Node);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Remove a timer handler.
|
||
|
*/
|
||
|
void CTimer::RemHandler(CTimerHandler *pthOld)
|
||
|
{
|
||
|
// access to the list of handlers must be locked
|
||
|
CTSingleLock slHooks(&tm_csHooks, TRUE);
|
||
|
|
||
|
ASSERT(this!=NULL);
|
||
|
pthOld->th_Node.Remove();
|
||
|
}
|
||
|
|
||
|
/* Handle timer handlers manually. */
|
||
|
void CTimer::HandleTimerHandlers(void)
|
||
|
{
|
||
|
// access to the list of handlers must be locked
|
||
|
CTSingleLock slHooks(&_pTimer->tm_csHooks, TRUE);
|
||
|
// handle all timers
|
||
|
CTimer_TimerFunc_internal();
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Set the real time tick value.
|
||
|
*/
|
||
|
void CTimer::SetRealTimeTick(TIME tNewRealTimeTick)
|
||
|
{
|
||
|
ASSERT(this!=NULL);
|
||
|
tm_RealTimeTimer = tNewRealTimeTick;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get the real time tick value.
|
||
|
*/
|
||
|
TIME CTimer::GetRealTimeTick(void) const
|
||
|
{
|
||
|
ASSERT(this!=NULL);
|
||
|
return tm_RealTimeTimer;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set the current game tick used for time dependent tasks (animations etc.).
|
||
|
*/
|
||
|
void CTimer::SetCurrentTick(TIME tNewCurrentTick) {
|
||
|
ASSERT(this!=NULL);
|
||
|
_CurrentTickTimer = tNewCurrentTick;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get current game time, always valid for the currently active task.
|
||
|
*/
|
||
|
const TIME CTimer::CurrentTick(void) const {
|
||
|
ASSERT(this!=NULL);
|
||
|
return _CurrentTickTimer;
|
||
|
}
|
||
|
const TIME CTimer::GetLerpedCurrentTick(void) const {
|
||
|
ASSERT(this!=NULL);
|
||
|
return _CurrentTickTimer+tm_fLerpFactor*TickQuantum;
|
||
|
}
|
||
|
// Set factor for lerping between ticks.
|
||
|
void CTimer::SetLerp(FLOAT fFactor) // sets both primary and secondary
|
||
|
{
|
||
|
ASSERT(this!=NULL);
|
||
|
tm_fLerpFactor = fFactor;
|
||
|
tm_fLerpFactor2 = fFactor;
|
||
|
}
|
||
|
void CTimer::SetLerp2(FLOAT fFactor) // sets only secondary
|
||
|
{
|
||
|
ASSERT(this!=NULL);
|
||
|
tm_fLerpFactor2 = fFactor;
|
||
|
}
|
||
|
// Disable lerping factor (set both factors to 1)
|
||
|
void CTimer::DisableLerp(void)
|
||
|
{
|
||
|
ASSERT(this!=NULL);
|
||
|
tm_fLerpFactor =1.0f;
|
||
|
tm_fLerpFactor2=1.0f;
|
||
|
}
|
||
|
|
||
|
// convert a time value to a printable string (hh:mm:ss)
|
||
|
CTString TimeToString(FLOAT fTime)
|
||
|
{
|
||
|
CTString strTime;
|
||
|
int iSec = floor(fTime);
|
||
|
int iMin = iSec/60;
|
||
|
iSec = iSec%60;
|
||
|
int iHou = iMin/60;
|
||
|
iMin = iMin%60;
|
||
|
strTime.PrintF("%02d:%02d:%02d", iHou, iMin, iSec);
|
||
|
return strTime;
|
||
|
}
|