1
0
mirror of https://github.com/ptitSeb/Serious-Engine synced 2025-01-21 18:13:48 +01:00
Serious-Engine/Sources/Engine/Math/Object3D_IO.cpp

607 lines
19 KiB
C++
Raw Normal View History

2016-03-12 01:20:51 +01:00
/* Copyright (c) 2002-2012 Croteam Ltd.
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as published by
the Free Software Foundation
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
2016-03-11 14:57:17 +01:00
// If you happen to have the Exploration 3D library (in Engine/exploration3d/), you can enable its features here.
#define USE_E3D 0
#include "Engine/StdH.h"
2016-03-11 14:57:17 +01:00
#include <Engine/Math/Object3D.h>
#include <Engine/Base/Registry.h>
#include <Engine/Base/Stream.h>
#include <Engine/Base/Memory.h>
#include <Engine/Base/ErrorReporting.h>
#include <Engine/Graphics/Color.h>
#include <Engine/Templates/DynamicContainer.cpp>
#include <Engine/Templates/DynamicArray.cpp>
#include <Engine/Templates/StaticStackArray.cpp>
#if USE_E3D
#include <Engine/exploration3d/e3ext.h>
#include <Engine/exploration3d/explor3d.h>
#endif
#undef W
#undef NONE
void FillConversionArrays_t(const FLOATmatrix3D &mTransform);
void ClearConversionArrays( void);
void RemapVertices(BOOL bAsOpened);
/*
* Intermediate structures used for converting from Exploration 3D data format into O3D
*/
struct ConversionTriangle {
INDEX ct_iVtx[3]; // indices of vertices
INDEX ct_iTVtx[3]; // indices of texture vertices
INDEX ct_iMaterial; // index of material
};
struct ConversionMaterial {
ULONG cm_ulTag; // for recognition of material
CTString cm_strName; // material's name
COLOR cm_colColor; // material's color
CDynamicContainer<INDEX> ms_Polygons; // indices of polygons in this material
};
// conversion arrays
CDynamicContainer<ConversionMaterial> acmMaterials;
CStaticArray<ConversionTriangle> actTriangles;
CStaticArray<FLOAT3D> avVertices;
CStaticStackArray<FLOAT3D> avDst;
CStaticArray<FLOAT2D> avTextureVertices;
CStaticArray<INDEX> aiRemap;
/////////////////////////////////////////////////////////////////////////////
// Helper functions
//--------------------------------------------------------------------------------------------
class CObjectSectorLock {
private:
CObjectSector *oscl_posc; // ptr to object sector that will do lock/unlock
public:
CObjectSectorLock( CObjectSector *posc); // lock all object sector arrays
~CObjectSectorLock(); // unlock all object sector arrays
};
//--------------------------------------------------------------------------------------------
/*
* To lock all object 3D dyna arrays one must create an instance of CObject3DLock.
* Locking job is done inside class constructor
*/
CObjectSectorLock::CObjectSectorLock( CObjectSector *posc) {
ASSERT( posc != NULL);
oscl_posc = posc;
posc->LockAll();
}
//--------------------------------------------------------------------------------------------
/*
* Unlocking of all object 3D dynamic arrays will occur automatically when exiting
* current scope (routine). This is done in class destructor
*/
CObjectSectorLock::~CObjectSectorLock() {
oscl_posc->UnlockAll();
}
//--------------------------------------------------------------------------------------------
// function makes Little-Big indian conversion of 4 bytes and returns valid SLONG
inline SLONG ConvertLong( SBYTE *pfm)
{
UBYTE i;
UBYTE ret_long[ 4];
for( i=0; i<4; i++)
ret_long[ i] = *((UBYTE *) pfm + 3 - i);
return( *((SLONG *) ret_long) );
};
//--------------------------------------------------------------------------------------------
// function makes Little-Big indian conversion of 2 bytes and returns valid WORD
inline INDEX ConvertWord( SBYTE *pfm)
{
char aret_word[ 2];
aret_word[ 0] = *(pfm+1);
aret_word[ 1] = *(pfm+0);
INDEX ret_word = (INDEX) *((SWORD *) aret_word);
return( ret_word);
};
//--------------------------------------------------------------------------------------------
// function makes Little-Big indian conversion of 4 bytes representing float and returns valid float
inline float ConvertFloat( SBYTE *pfm)
{
UBYTE i;
char float_no[ 4];
for( i=0; i<4; i++)
float_no[ i] = *( pfm + 3 - i);
return( *((float *) float_no) );
};
//--------------------------------------------------------------------------------------------
// function recognizes and loads many 3D file formats, throws char* errors
#if USE_E3D
HINSTANCE _h3dExploration = NULL;
TInitExploration3D _Init3d;
e3_API*_api;
e3_SCENE*_pe3Scene;
e3_OBJECT *_pe3Object;
HWND _hwnd;
BOOL _bBatchLoading = FALSE;
#endif
// start/end batch loading of 3d objects
void CObject3D::BatchLoading_t(BOOL bOn)
{
#if USE_E3D
// check for dummy calls
if (!_bBatchLoading==!bOn) {
return;
}
// if turning on
if (bOn) {
// if exploration library not yet loaded
if( _h3dExploration == NULL) {
// prepare registry
REG_SetString("HKEY_LOCAL_MACHINE\\SOFTWARE\\X Dimension\\SeriousEngine\\Plugins\\LWO\\BreakObject", "0");
REG_SetString("HKEY_LOCAL_MACHINE\\SOFTWARE\\X Dimension\\SeriousEngine\\Plugins\\LWO\\textures", "1");
REG_SetString("HKEY_LOCAL_MACHINE\\SOFTWARE\\X Dimension\\SeriousEngine\\Plugins\\LWO\\chkwrap", "1");
REG_SetString("HKEY_LOCAL_MACHINE\\SOFTWARE\\X Dimension\\SeriousEngine\\Plugins\\LWO\\readUView", "1");
// load the dll
_h3dExploration = LoadLibrary(EXPLORATION_LIBRRAY);
// if library not opened
if(_h3dExploration == NULL) {
throw("3D Exploration dll not found !");
}
_Init3d=(TInitExploration3D)GetProcAddress(_h3dExploration,"InitExploration3D");
CTString strPlugins = _fnmApplicationPath+"Bin\\3DExplorationPlugins";
e3_INIT init;
memset(&init,0,sizeof(init));
init.e_size = sizeof(init);
init.e_registry = "Software\\X Dimension\\SeriousEngine";
init.e_plugins = (char*)(const char*)strPlugins;
if(_Init3d) {
_api=_Init3d(&init);
} else {
throw("Unable to initialize 3D object library");
}
}
// if 3dexp window not open yet
if (_hwnd==NULL) {
// obtain window needed for 3D exploration library to work
_hwnd=CreateWindow(EXPLORATION_WINDOW,"Object Loader",0,100,100,100,50,NULL,0,(HINSTANCE) GetModuleHandle( NULL),0);
//ShowWindow(_hwnd, SW_HIDE);
}
// if turning off
} else {
// if 3dexp window is open
if (_hwnd!=NULL) {
// close it
DestroyWindow(_hwnd);
_hwnd = NULL;
}
}
_bBatchLoading = bOn;
#else
throw("3D Exploration is disabled in this build.");
#endif
}
void CObject3D::LoadAny3DFormat_t(
const CTFileName &fnmFileName,
const FLOATmatrix3D &mTransform,
enum LoadType ltLoadType/*= LT_NORMAL*/)
{
#if USE_E3D
BOOL bWasOn = _bBatchLoading;
try {
if (!_bBatchLoading) {
BatchLoading_t(TRUE);
}
// call file load with file's full path name
CTString strFile = _fnmApplicationPath+fnmFileName;
char acFile[MAX_PATH];
wsprintf(acFile,"%s",strFile);
e3_LoadFile(_hwnd, acFile);
_pe3Scene=e3_GetScene(_hwnd);
// if scene is successefuly loaded
if(_pe3Scene != NULL)
{
_pe3Object = _pe3Scene->GetObject3d( 0);
// use different methods to convert into Object3D
switch( ltLoadType)
{
case LT_NORMAL:
FillConversionArrays_t(mTransform);
ConvertArraysToO3D();
break;
case LT_OPENED:
FillConversionArrays_t(mTransform);
RemapVertices(TRUE);
ConvertArraysToO3D();
break;
case LT_UNWRAPPED:
FLOATmatrix3D mOne;
mOne.Diagonal(1.0f);
FillConversionArrays_t(mOne);
if( avTextureVertices.Count() == 0)
{
ThrowF_t("Unable to import mapping from 3D object because it doesn't contain mapping coordinates.");
}
RemapVertices(FALSE);
ConvertArraysToO3D();
break;
}
ClearConversionArrays();
}
else
{
ThrowF_t("Unable to load 3D object: %s", (const char *)fnmFileName);
}
if (!bWasOn) {
BatchLoading_t(FALSE);
}
} catch (char *) {
if (!bWasOn) {
BatchLoading_t(FALSE);
}
throw;
}
#endif
}
/*
* Converts data from Exploration3D format into arrays used for conversion to O3D
*/
void FillConversionArrays_t(const FLOATmatrix3D &mTransform)
{
#if USE_E3D
// all polygons must be triangles
if(_pe3Object->_facecount != 0)
{
throw("Error: Not all polygons are triangles!");
}
// check if we need flipping (if matrix is flipping, polygons need to be flipped)
const FLOATmatrix3D &m = mTransform;
FLOAT fDet =
m(1,1)*(m(2,2)*m(3,3)-m(2,3)*m(3,2))+
m(1,2)*(m(2,3)*m(3,1)-m(2,1)*m(3,3))+
m(1,3)*(m(2,1)*m(3,2)-m(2,2)*m(3,1));
FLOAT bFlipped = fDet<0;
// ------------ Convert object vertices (coordinates)
INDEX ctVertices = _pe3Object->pointcount;
avVertices.New(ctVertices);
// copy vertices
for( INDEX iVtx=0; iVtx<ctVertices; iVtx++)
{
avVertices[iVtx] = ((FLOAT3D &)_pe3Object->points[iVtx])*mTransform;
avVertices[iVtx](1) = -avVertices[iVtx](1);
avVertices[iVtx](3) = -avVertices[iVtx](3);
}
// ------------ Convert object's mapping vertices (texture vertices)
INDEX ctTextureVertices = _pe3Object->txtcount;
avTextureVertices.New(ctTextureVertices);
// copy texture vertices
for( INDEX iTVtx=0; iTVtx<ctTextureVertices; iTVtx++)
{
avTextureVertices[iTVtx] = (FLOAT2D &)_pe3Object->txtpoints[iTVtx];
}
// ------------ Organize triangles as list of surfaces
// allocate triangles
INDEX ctTriangles = _pe3Object->facecount;
actTriangles.New(ctTriangles);
acmMaterials.Lock();
// sort triangles per surfaces
for( INDEX iTriangle=0; iTriangle<ctTriangles; iTriangle++)
{
ConversionTriangle &ctTriangle = actTriangles[iTriangle];
e3_TFACE *pe3Triangle = _pe3Object->GetFace( iTriangle);
// copy vertex indices
if (bFlipped) {
ctTriangle.ct_iVtx[0] = pe3Triangle->v[2];
ctTriangle.ct_iVtx[1] = pe3Triangle->v[1];
ctTriangle.ct_iVtx[2] = pe3Triangle->v[0];
} else {
ctTriangle.ct_iVtx[0] = pe3Triangle->v[0];
ctTriangle.ct_iVtx[1] = pe3Triangle->v[1];
ctTriangle.ct_iVtx[2] = pe3Triangle->v[2];
}
// copy texture vertex indices
if (bFlipped) {
ctTriangle.ct_iTVtx[0] = pe3Triangle->t[2];
ctTriangle.ct_iTVtx[1] = pe3Triangle->t[1];
ctTriangle.ct_iTVtx[2] = pe3Triangle->t[0];
} else {
ctTriangle.ct_iTVtx[0] = pe3Triangle->t[0];
ctTriangle.ct_iTVtx[1] = pe3Triangle->t[1];
ctTriangle.ct_iTVtx[2] = pe3Triangle->t[2];
}
// obtain material
e3_MATERIAL *pe3Mat = pe3Triangle->material;
BOOL bNewMaterial = TRUE;
// attach triangle into one material
for( INDEX iMat=0; iMat<acmMaterials.Count(); iMat++)
{
// if this material already exist in array of materu
if( acmMaterials[ iMat].cm_ulTag == (ULONG) pe3Mat)
{
// set index of surface
ctTriangle.ct_iMaterial = iMat;
// add triangle into surface list of triangles
INDEX *piNewTriangle = new INDEX(1);
*piNewTriangle = iTriangle;
acmMaterials[ iMat].ms_Polygons.Add( piNewTriangle);
bNewMaterial = FALSE;
continue;
}
}
// if material hasn't been added yet
if( bNewMaterial)
{
// add new material
ConversionMaterial *pcmNew = new ConversionMaterial;
acmMaterials.Unlock();
acmMaterials.Add( pcmNew);
acmMaterials.Lock();
// set polygon's material index
INDEX iNewMaterial = acmMaterials.Count()-1;
ctTriangle.ct_iMaterial = iNewMaterial;
// add triangle into new surface's list of triangles
INDEX *piNewTriangle = new INDEX(1);
*piNewTriangle = iTriangle;
acmMaterials[ iNewMaterial].ms_Polygons.Add( piNewTriangle);
// remember recognition tag (ptr)
pcmNew->cm_ulTag = (ULONG) pe3Mat;
// ---------- Set material's name
// if not default material
if( pe3Mat != NULL && pe3Mat->name != NULL)
{
acmMaterials[iNewMaterial].cm_strName = CTString(pe3Mat->name);
// get color
COLOR colColor = CLR_CLRF( pe3Mat->GetDiffuse().rgb());
acmMaterials[iNewMaterial].cm_colColor = colColor;
}
else
{
acmMaterials[iNewMaterial].cm_strName = "Default";
acmMaterials[iNewMaterial].cm_colColor = C_GRAY;
}
}
}
acmMaterials.Unlock();
#endif
}
void ClearConversionArrays( void)
{
acmMaterials.Clear();
actTriangles.Clear();
avVertices.Clear();
avTextureVertices.Clear();
aiRemap.Clear();
}
void RemapVertices(BOOL bAsOpened)
{
{INDEX ctSurf = 0;
// fill remap array with indices of vertices in order how they appear per polygons
{FOREACHINDYNAMICCONTAINER(acmMaterials, ConversionMaterial, itcm)
{
_RPT1(_CRT_WARN, "Indices of polygons in surface %d:", ctSurf);
// for each polygon in surface
{FOREACHINDYNAMICCONTAINER(itcm->ms_Polygons, INDEX, itipol)
{
_RPT1(_CRT_WARN, " %d,", *itipol);
}}
_RPT0(_CRT_WARN, "\n");
ctSurf++;
}}
_RPT0(_CRT_WARN, "Polygons and their vertex indices:\n");
for( INDEX ipol=0; ipol<actTriangles.Count(); ipol++)
{
INDEX idxVtx0 = actTriangles[ipol].ct_iVtx[0];
INDEX idxVtx1 = actTriangles[ipol].ct_iVtx[1];
INDEX idxVtx2 = actTriangles[ipol].ct_iVtx[2];
_RPT4(_CRT_WARN, "Indices of vertices in polygon %d : (%d, %d, %d)\n", ipol, idxVtx0, idxVtx1, idxVtx2);
}}
INDEX ctVertices = avVertices.Count();
aiRemap.New(ctVertices);
// fill remap array with indices of vertices in order how they appear per polygons
FOREACHINDYNAMICCONTAINER(acmMaterials, ConversionMaterial, itcm)
{
// fill remap array with -1
for( INDEX iRemap=0; iRemap<ctVertices; iRemap++)
{
aiRemap[iRemap] = -1;
}
// reset 'vertex in surface' counter
INDEX ctvx = 0;
// for each polygon in surface
{FOREACHINDYNAMICCONTAINER(itcm->ms_Polygons, INDEX, itipol)
{
INDEX idxPol = *itipol;
// for each vertex in polygon
for(INDEX iVtx=0; iVtx<3; iVtx++)
{
// get vertex's index
INDEX idxVtx = actTriangles[idxPol].ct_iVtx[iVtx];
if( aiRemap[idxVtx] == -1)
{
aiRemap[idxVtx] = ctvx;
ctvx++;
}
}
}}
INDEX ctOld = avDst.Count();
// allocate new block of vertices used in this surface
FLOAT3D *pavDst = avDst.Push( ctvx);
// for each polygon in surface
{FOREACHINDYNAMICCONTAINER(itcm->ms_Polygons, INDEX, itipol)
{
INDEX iPol=*itipol;
// for each vertex in polygon
for(INDEX iVtx=0; iVtx<3; iVtx++)
{
// get vertex's index
INDEX idxVtx = actTriangles[iPol].ct_iVtx[iVtx];
// get remapped index
INDEX iRemap = aiRemap[idxVtx];
// if cutting object
if( bAsOpened)
{
// copy vertex coordinate
pavDst[ iRemap] = avVertices[idxVtx];
}
// if creating unwrapped mapping
else
{
// copy texture coordinate
FLOAT3D vMap;
vMap(1) = avTextureVertices[actTriangles[iPol].ct_iTVtx[iVtx]](1);
vMap(2) = -avTextureVertices[actTriangles[iPol].ct_iTVtx[iVtx]](2);
vMap(3) = 0;
pavDst[ iRemap] = vMap;
}
// remap index of polygon vertex
actTriangles[iPol].ct_iVtx[iVtx] = iRemap+ctOld;
}
}}
}
aiRemap.Clear();
// replace remapped array of vertices over original one
avVertices.Clear();
avVertices.New(avDst.Count());
for( INDEX iVtxNew=0; iVtxNew<avDst.Count(); iVtxNew++)
{
avVertices[iVtxNew] = avDst[iVtxNew];
}
avDst.PopAll();
{INDEX ctSurf = 0;
// fill remap array with indices of vertices in order how they appear per polygons
{FOREACHINDYNAMICCONTAINER(acmMaterials, ConversionMaterial, itcm)
{
_RPT1(_CRT_WARN, "Indices of polygons in surface %d:", ctSurf);
// for each polygon in surface
{FOREACHINDYNAMICCONTAINER(itcm->ms_Polygons, INDEX, itipol)
{
_RPT1(_CRT_WARN, " %d,", *itipol);
}}
_RPT0(_CRT_WARN, "\n");
ctSurf++;
}}
_RPT0(_CRT_WARN, "Polygons and their vertex indices:\n");
for( INDEX ipol=0; ipol<actTriangles.Count(); ipol++)
{
INDEX idxVtx0 = actTriangles[ipol].ct_iVtx[0];
INDEX idxVtx1 = actTriangles[ipol].ct_iVtx[1];
INDEX idxVtx2 = actTriangles[ipol].ct_iVtx[2];
_RPT4(_CRT_WARN, "Indices of vertices in polygon %d : (%d, %d, %d)\n", ipol, idxVtx0, idxVtx1, idxVtx2);
}}
}
/*
* Convert streihgtfowrard from intermediate structures into O3D
*/
void CObject3D::ConvertArraysToO3D( void)
{
acmMaterials.Lock();
// create one sector
CObjectSector &osc = *ob_aoscSectors.New(1);
// this will lock at the instancing and unlock while destructing all sector arrays
CObjectSectorLock OSectorLock(&osc);
// ------------ Vertices
INDEX ctVertices = avVertices.Count();
CObjectVertex *pVtx = osc.osc_aovxVertices.New(ctVertices);
for(INDEX iVtx=0; iVtx<ctVertices; iVtx++)
{
pVtx[ iVtx] = FLOATtoDOUBLE( avVertices[iVtx]);
}
// ------------ Materials
INDEX ctMaterials = acmMaterials.Count();
osc.osc_aomtMaterials.New( ctMaterials);
for( INDEX iMat=0; iMat<ctMaterials; iMat++)
{
osc.osc_aomtMaterials[iMat] = CObjectMaterial( acmMaterials[iMat].cm_strName);
osc.osc_aomtMaterials[iMat].omt_Color = acmMaterials[iMat].cm_colColor;
}
// ------------ Edges and polygons
INDEX ctTriangles = actTriangles.Count();
CObjectPolygon *popo = osc.osc_aopoPolygons.New(ctTriangles);
CObjectPlane *popl = osc.osc_aoplPlanes.New(ctTriangles);
// we need 3 edges for each polygon
CObjectEdge *poedg = osc.osc_aoedEdges.New(ctTriangles*3);
for(INDEX iTri=0; iTri<ctTriangles; iTri++)
{
// obtain triangle's vertices
CObjectVertex *pVtx0 = &osc.osc_aovxVertices[ actTriangles[iTri].ct_iVtx[0]];
CObjectVertex *pVtx1 = &osc.osc_aovxVertices[ actTriangles[iTri].ct_iVtx[1]];
CObjectVertex *pVtx2 = &osc.osc_aovxVertices[ actTriangles[iTri].ct_iVtx[2]];
// create edges
poedg[iTri*3+0] = CObjectEdge( *pVtx0, *pVtx1);
poedg[iTri*3+1] = CObjectEdge( *pVtx1, *pVtx2);
poedg[iTri*3+2] = CObjectEdge( *pVtx2, *pVtx0);
// create polygon edges
popo[iTri].opo_PolygonEdges.New(3);
popo[iTri].opo_PolygonEdges.Lock();
popo[iTri].opo_PolygonEdges[0].ope_Edge = &poedg[iTri*3+0];
popo[iTri].opo_PolygonEdges[1].ope_Edge = &poedg[iTri*3+1];
popo[iTri].opo_PolygonEdges[2].ope_Edge = &poedg[iTri*3+2];
popo[iTri].opo_PolygonEdges.Unlock();
// set material
popo[iTri].opo_Material = &osc.osc_aomtMaterials[ actTriangles[iTri].ct_iMaterial];
popo[iTri].opo_colorColor = popo[iTri].opo_Material->omt_Color;
// create and set plane
popl[iTri] = DOUBLEplane3D( *pVtx0, *pVtx1, *pVtx2);
popo[iTri].opo_Plane = &popl[iTri];
}
acmMaterials.Unlock();
}